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Abstract 
Food forests are an increasingly popular type of nature-inclusive agriculture. One of the ecosystem 

services provided by food forests is carbon storage. In this study, the variation in aboveground 

carbon stock of 21 food forests has been examined, as part of the Dutch National Monitoring 

Program Food Forests (NMPF). Furthermore, the effect of food forests on microclimate has been 

analysed and the variables to estimate aboveground carbon (AGC) stock have been tested for 

relevance. Mean aboveground carbon stock was significantly higher in former forests than in 

former arable lands and grasslands, with a difference of 62.8 and 64.8 Mg ha-1 respectively. Food 

forests with a dispersed structural composition had a significantly higher mean AGC stock than food 

forests with alleys (with a difference of 2.2 Mg ha-1). No significant differences between three soil 

texture classes were found; nor a correlation between soil conditions and AGC stock. Carbon 

accumulation over food forest age was following a sigmoid curve, although the saturation point of 

this curve is uncertain. An analysis of AGC stock development over time within the same plots is 

necessary to confirm the sigmoid shape of the relation between AGC stock over time and to 

determine the exact curve. Food forests were both cooler (- 10.1 °C) and moister (+ 12.0%) than 

its environment. These differences were not increasing over food forest age or AGC stock. A 

generalised linear model including both maximum height of the tree layer (HT) and the total basal 

area (BA) of shrubs and trees explained over 99% of AGC stock. Both explanatory variables 

significantly explained over 80% of AGC stock variation individually (Adj. R2 HT = 0.87, Adj. R2 

BA = 0.82). Although a model with only one variable was less accurate, maximum height and basal 

area might be applicable for low-threshold AGC stock estimations. The explanatory variable 

‘canopy closure’ was less accurate. No fixed percentage of shrub carbon stock could be determined, 

and it therefore is useful to continue shrub measurements in further research on AGC stock of 

food forests. Further research is necessary to determine the which variables actually influence food 

forest aboveground carbon stock. This study could be used as baseline study for future research 

on carbon stock of food forests. 
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Layman summary 
Over the last decades, much biodiversity has been lost. One of the reasons of this biodiversity 

decrease is the disappearance and degradation of habitat, mostly caused by agricultural land 

extension. Combining nature and agriculture is one possibility to restore biodiversity. In this way, 

land could be used for agriculture and nature can be restored at the same time. A food forest is 

such a type of nature-inclusive agriculture. Multiple species of trees, shrubs and herbs are grown 

together in a food forest, and since the use of pesticides and fertilizers have been left out, a natural 

system is able to develop.  

The positive effect on biodiversity is not the only ecosystem service a food forest provides. Another 

one is the carbon storage of trees and shrubs growing in a food forest. Storage of carbon reduces 

the amount of carbon dioxide (CO2) in the air and therefore combats global warming. In this 

project, carbon stocks of 21 Dutch food forests and what influences these carbon stocks have been 

assessed as part of the Dutch national monitoring program food forests (NMPF). The NMPF is 

established by the stakeholder cooperation Green Deal food forests in 2019. This is the first large-

scale and standardised study on aboveground carbon (AGC) stock in Dutch food forests, which 

can form a basis for future research. 

At least three sampling plots of 10x10m were randomly selected in every food forests. Species, 

height and stem diameter at breast height were documented for all trees within these plots. Species, 

height, crown diameter, number of stems and diameter of the three thickest stems were noted for 

all shrubs in these sampling plots. With these measurements, the total carbon stock in aboveground 

plant biomass was determined, so the roots of plants and soil organic carbon were not included. 

Next to this, the closure of the canopy, the temperature and humidity were measured, both inside 

and outside the food forest. In this way, the effect of the food forest on its microclimate has been 

examined. 

After the fieldwork was performed, the results have been analysed. As hypothesised, the AGC 

stock was higher in relatively old food forests than in younger ones, with exception of former 

forests. These former forests had a significant initial AGC stock which did not increase over age. 

The relation between AGC stock and age followed a sigmoid curve for food forests on former 

grasslands and arable lands. This meant that carbon stock was first increasing exponentially, and 

saturated over time. Whether this sigmoid model actually describes the curve of AGC accumulation 

in food forests is uncertain. For example, the moment of saturation is questionable. The 

development of AGC stock within one sampling plot over time should be examined in future, to 

determine the accuracy of the sigmoid model. 

As mentioned before, the relation between multiple variables and AGC stocks of food forests has 

been investigated as well. Since moisture and nutrient availability both positively influenced plant 

growth, and these conditions were correlated with soil texture, a significant effect of soil texture 

on AGC stock was expected. However, no relation between soil texture and AGC stock was found 

in this study. Neither a correlation between soil conditions (measured by the NMPF before) and 

aboveground carbon stock was found. Despite the absence of relations, one could not exclude the 

possibility of any effect of soil conditions on the accumulation of carbon stock. These relations 

might become visible when food forests are getting older, or when multiple annual measurements 

have been performed in each food forest. A significant relation was found between former land 

use and AGC stock. Former forests had a higher AGC stock than former arable lands and 

grasslands. The structural composition of the food forest did show a significant effect as well, as 

food forests where all crop species were planted mixed together (dispersed) had a higher AGC stock 
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than food forests that were planted in rows (alleys). One could argue that this effect is caused by 

positive interactions between species, which are likely to occur more often in dispersed food forests. 

However, this hypothesis could not be confirmed yet. 

This study did show an influence of food forests on their microclimate. Significant higher 

temperatures and lower humidity levels were found inside the food forest, compared to the outside 

conditions. These differences in temperature and humidity were hypothesized to increase over the 

age and AGC stock of food forests. However, this hypothesis could not be confirmed, possibly 

because of the lack of relatively old food forests and measurements errors at some of the sampling 

points. These measurements will be repeated in the coming years, after which the effect of food 

forests on their microclimate is to be analysed more thoroughly. 

Finally, the accuracy of multiple carbon stock calculations has been examined. The methods used 

in this study were complex and time-consuming, but there might be an easier way to determine 

AGC stock. A model which included three variables (tree height, canopy closure and the sum of 

stem diameters) was found most accurate. Nonetheless, models including either maximum height 

or the sum of stem diameters were still quite precise. According to this, a fairly accurate estimate 

of AGC stock could potentially be made by measuring only one explanatory variable. This 

conclusion is yet to be confirmed in future, but it might be useful to distinguish two separate 

methodologies: a complex, time-consuming method to determine AGC stocks precisely versus a 

low-threshold alternative to estimate AGC stock quickly. There is no confirmation of whether it is 

useful to measure shrub carbon stocks. It might be possible to determine a fixed percentage of 

shrub carbon stock in future, which would make the relatively time-consuming measurements on 

shrubs redundant. This could not be done based on this study. 

The findings of this study will be used as baseline for other studies part of the NMPF in the coming 

years. These results endorse the potential of food forests as sustainable, nature-inclusive type of 

agriculture, at least concerning carbon storage. This is, however, only the beginning of standardised, 

large-scale research on Dutch food forests and for many more to follow. 
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Nederlandse samenvatting 
Als gevolg van het verlies aan leefgebied, is veel van de biodiversiteit verloren gegaan. Eén van de 

voornaamste oorzaken van dit verlies aan leefgebied is de uitbreiding van landbouwgebieden. Ook 

in Nederland. Eén van de oplossingen is het combineren van natuur en landbouw. Zo wordt de 

beschikbare ruimte nuttig besteed met landbouw en krijgt de natuur en de biodiversiteit kans om 

te herstellen. Een voedselbos is een vorm van zulke natuur-inclusieve landbouw. In een voedselbos 

groeien meerdere soorten gewassen door elkaar, zowel bomen, struiken als kruiden en wordt geen 

gebruik gemaakt van bestrijdingsmiddelen en bemesting. En dus krijgt de natuur de kans zich te 

ontplooien in een voedselbos: landbouw, maar dan inclusief natuur. 

Naast het bevorderen van de biodiversiteit, is ook het opslaan van koolstof een groot voordeel van 

voedselbossen. Het opslaan van koolstof zorgt voor minder koolstofdioxide (CO2) in de lucht en 

draagt dus bij aan het tegengaan van klimaatverandering. In dit project is onderzoek gedaan naar 

de koolstofvoorraden van 21 Nederlandse voedselbossen en gekeken naar waardoor 

koolstofvoorraden beïnvloed worden, allemaal onderdeel van het Nationaal 

Monitoringsprogramma Voedselbossen (NMVB) dat in 2019 door de Green Deal Voedselbossen 

is opgezet. Dit onderzoek is het eerste grootschalige en gestandaardiseerde onderzoek naar 

bovengrondse koolstof (BGK) opslag in Nederlandse voedselbossen, waar in de komende jaren 

op kan worden gebouwd. 

In elk voedselbos zijn steekproefsgewijs plots van 10 bij 10 meter geselecteerd. In deze plots, 

minimaal 3 per voedselbos, zijn van alle bomen de soort, de hoogte, en de dikte van de stam op 

borsthoogte bepaald. Van alle struiken zijn de soort, de hoogte, de diameter, het aantal stammen 

en de dikte van de drie dikste stammen genoteerd. Dit samen leidde tot een schatting van de totale 

hoeveelheid opgeslagen koolstof in bovengrondse biomassa van bomen en struiken (alle 

bovengrondse delen van de planten; wortels zijn niet meegeteld). Ook is de geslotenheid van het 

kroondek, de temperatuur en luchtvochtigheid gemeten, zowel in het voedselbos als net daarbuiten, 

om te kijken wat het effect van het voedselbos op het microklimaat is. 

Na het veldwerk zijn alle resultaten geanalyseerd. Zoals verwacht, was de koolstofvoorraad in 

oudere voedselbossen groter dan in de jongere voedselbossen. Uitzonderingen waren 

voedselbossen die ontwikkeld zijn in een voormalig bos: in deze voedselbossen was al veel BGK 

aanwezig en nam deze voorraad niet toe over de leeftijd. Voor alle andere voedselbossen gold: het 

verband tussen BGK-voorraad en leeftijd volgde een sigmoïde curve. Dit betekent dat 

koolstofvoorraad eerst exponentieel toeneemt en vervolgens verzadigt. Het moment waarop BGK-

voorraad in voedselbossen verzadigt en of dit sigmoïde model ook daadwerkelijk klopt, kan nog 

niet gezegd worden. Om die vraag te beantwoorden moet worden gekeken naar hoe de BGK-

voorraad in één en hetzelfde plot toeneemt over de komende jaren. 

Zoals gezegd is ook gekeken naar het effect van verschillende variabelen op de BGK-opslag in 

voedselbossen. De verwachting was dat de bodemtextuur een duidelijk effect zou hebben op BGK-

opslag. Want hoe vochtiger en voedselrijker de bodem, hoe sneller bomen en struiken kunnen 

groeien en hoe groter de BGK-voorraad is. Deze relatie tussen bodemtextuur en koolstofopslag is 

niet gevonden in dit onderzoek. Er is ook geen verband gevonden tussen bodemcondities, die zijn 

eerder al zijn gemeten door het NMVB, en BGK-opslag. Het is echter niet uit te sluiten dat deze 

bodemcondities toch een invloed hebben op hoe snel bomen groeien en hoe snel ze dus koolstof 

opslaan. Het voormalig landgebruik van voedselbossen had wel invloed op de BGK-opslag. 

Voedselbossen die gebouwd zijn in voormalige bossen hebben een grotere BGK-voorraad dan 

voedselbossen die gepland zijn op voormalige akkers en graslanden. De structuur van het 
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voedselbos had ook effect op de koolstofopslag. Voedselbossen waar vele soorten door elkaar zijn 

aangeplant (dispersed) hadden gemiddeld een grotere BGK-voorraad dan voedselbossen waar alle 

gewassen in rijen zijn aangeplant (alleys). Dit zou kunnen komen omdat de verschillende boom- en 

struiksoorten een positieve invloed op elkaar hebben, maar het is te vroeg om dat te kunnen 

concluderen. Daarvoor is uitgebreider onderzoek nodig.  

In dit onderzoek is verder gevonden dat voedselbossen het microklimaat beïnvloeden. In het 

voedselbos werden lagere temperaturen en hogere luchtvochtigheden gemeten dan 10 à 15 meter 

buiten het voedselbos. Ook was de verwachting dat deze verschillen in temperatuur en 

luchtvochtigheid toe zouden nemen naar mate de bomen en struiken in het voedselbos groter 

zouden zijn en er dus meer koolstof ligt opgeslagen. Dit verband is niet gevonden, maar het zou 

kunnen komen door het gebrek aan oudere voedselbossen of door meetfouten op sommige 

locaties. In de komende jaren wordt er steeds meer gemeten, en kunnen metingen van hetzelfde 

voedselbos uit verschillende jaren met elkaar worden vergeleken. Dan kan er een betere analyse 

gemaakt worden van of het effect van het voedselbos op het microklimaat verandert naarmate 

voedselbossen ouder worden. 

Tot slot is er in dit onderzoek aandacht besteed aan de berekeningen van koolstofopslag. De 

huidige methoden zijn namelijk complex en kosten veel tijd. Wellicht is er een eenvoudigere manier 

om BGK-voorraad te bepalen. Het antwoord is tweeledig. Aan de ene kant is een model waarin 

zowel de hoogte van de bomen, de dichtheid van de kroonlaag als de dikte van alle stammen wordt 

meegenomen het meest precies. Maar aan de andere kant zijn zowel de hoogte van de hoogste 

boom in het plot als de som de dikten van alle stammen behoorlijk precies. Op deze manier zou 

relatief eenvoudig een redelijk accurate schatting kunnen worden gemaakt van de totale BGK-

opslag in het voedselbos. In de komende jaren moet deze aanname nog worden bevestigd, maar 

het lijkt dus mogelijk dat er twee methodes komen: een ingewikkelde methode, die veel tijd kost, 

om daarmee heel precies de BGK-voorraad te bepalen en een eenvoudige methode, waarmee vrij 

snel een nauwkeurige schatting kan worden gemaakt van de BGK-voorraad. Ook over het wel of 

niet meten van struiken is nog geen uitsluitsel, ook daar is verder onderzoek voor nodig. Mogelijk 

kan er in de toekomst een vast percentage bepaald worden, waarmee het meten van alle struiken 

niet meer nodig is. 

De methoden die gebruikt zijn in dit onderzoek en de resultaten die eruit voortgekomen zijn zullen 

de komende jaren gebruikt gaan worden voor verder onderzoek in Nederlandse voedselbossen als 

onderdeel van het NMVB. De eerste resultaten onderschrijven de kracht van voedselbossen als 

duurzame vorm van landbouw, in ieder geval wat betreft koolstofopslag. Maar dit is nog maar het 

begin en heel veel verder onderzoek zal volgen. 
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1. Introduction 
The natural world as we all know is disappearing. Since the 1970s, over two third of the worlds’ 

wilderness areas and 52% of its biodiversity (Planbureau voor de Leefomgeving, 2019; WWF, 2014; 

Brooks, 2002; IPBES, 2019) disappeared. Moreover, species extinction rates are up to one 

thousand times as high as they were for the last millions of years (De Vos et al., 2015; Barnosky et 

al., 2011). All these effects can almost completely be attributed to anthropogenic influences. Up to 

50% of species loss is induced by habitat loss due to agricultural land extension (NEM, 2019; 

Geiger et al., 2010; Planbureau voor de Leefomgeving, 2019). Rainforests are burned to provide 

soybeans for our cattle and palm oil for many of our daily products and diverse ecosystems are 

replaced by monoculture corn fields. The biodiversity crisis is not only facing the natural world, it 

is threatening humanity as well. The decrease in biodiversity has led to a decrease in essential 

ecosystem services (Díaz et al., 2006; Cardinale et al., 2012). For example, a decreased water storage 

potential of soils has increased the frecuency of floods (Wheater & Evans, 2009) and the decrease 

in insect abundance threatens crop pollination (Watt et al., 1997; Collinge, 2000; Biesmeijer et al., 

2006). Moreover, global warming will be strengthened due to the decreased carbon sequestration 

capacity of our ecosystems (Malhi, 1999). In short, the consequences of biodiversity loss are 

problematic and biodiversity restoration is necessary to prevent the consequences from getting 

worse.  

There are several ways in which biodiversity can be restored. For example, an increasing area of 

land and marine systems is classified as protected area (UN, 2018), cities become more insect 

friendly (IUCN, 2020; Dutch Ministry of Nature, 2020), and large areas of degraded land are 

reforested, including withered African desserts (Conservation International; Face the Future). 

However, the most destructive factor is the expansion of agricultural land. So, if we are determined 

to restore habitats, a change is needed regarding our agricultural activities. And since conventional 

agriculture is under pressure of changing environmental conditions as well (NCA, 2018), a switch 

to more sustainable farming techniques are undoubtedly imperative. A collaboration between 

human activities and nature can be the solution on both problems at the same time. 

To conserve and restore nature, one could either separate of agriculture and protected nature 

reserves (land-sparing) or integrate both (land-sharing; Fischer et al., 2014). Nature-inclusive 

agriculture might yield less than conventional agriculture in terms of food production, increases 

the required space for agriculture (Chappell & LaValle 2011; Foley et al., 2005). However, the 

ecological value and biodiversity of these nature-inclusive agricultural lands are higher than on 

conventional agricultural farms (Hodgson et al., 2010; Phalan et al., 2011). Although less space could 

be entirely allocated to nature in this land-sharing principle (Green et al., 2005), the implementation 

of nature in agricultural lands might be an effective way to conserve nature (Green et al., 2005; 

Phalan et al., 2011; Tscharntke et al., 2012), even though critics prefer the idea of land-sparing (e.g. 

Kendal & Pimentel, 1994). Furthermore, one could argue that agricultural performance could be 

increased with the ecosystem services provided by nature. For example, microbial diversity can 

obviate the use of pesticides and soil water storage capacity can obviate irrigation of scarce fresh 

water (Cavoski et al., 2011; Wang et al., 2013). From another perspective, the harvest potential of 

this collaboration could make the investment in nature restoration more affordable. In this way, 

nature supports agriculture and vice versa.  

A food forest is an example of nature-inclusive agriculture (Nero et al., 2018; Park et al., 2018; Riolo, 

2019). In food forests, a large variety of tree, shrub and herb species are planted together in multiple 

strata (Green Deal Food Forests, 2019; Björklund, 2012; Nytofte & Henriksen, 2019). Compared 

to conventional agriculture, food forests are designed to function more like a natural system (Park 
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et al, 2018; Nytofte & Henriksen, 2019). In a natural system, soil microbial community can develop 

better, increasing water storage potential and nutrient richness of the soil. This makes irrigation 

and fertilisation needless. Due to its high diversity, food forests attract more insects and birds than 

conventional agricultural systems, which provide natural pest control. Temperate food forests have 

originated in the early 1990s, making use of the principles of tropical home gardens and 

permaculture (Kehlenbeck, 2007; Ferguson and Lovell, 2013). Today, more and more commercial, 

and large-scale food forests are realised in Western-Europe, making food forests an increasingly 

popular sustainable agricultural concept (Voedselboskaart, 2020). Some of the pioneering food 

forest farmers claim to reach up to 10 times higher efficiency compared to conventional agriculture 

(pers. comm. Wouter van Eck). Both ecological and business advantages display the potential of 

food forests, although this is not scientifically proven yet.  

In 2019, the Green Deal Food Forests, consisting of both governmental and non-governmental 

organisations, has established the Dutch National Monitoring Program Food Forests (NMPF; 

Green Deal Food Forests, 2019). Since the concept of food forests is relatively new in the 

Netherlands (or western Europe in its entirety), hardly any scientific research has been performed 

on this subject. The NMPF initially included twenty-one Dutch food forests, where standardised 

studies on a variety of ecological, economic, and social aspects were performed. The Dutch NMPF 

is the first large-scale research program on food forests. 

One of the ecosystem services a forest provides is the capacity to mitigate climate change by 

permanently storing carbon (Brockerhoff et al., 2017; Jose, 2009). And since food forests are 

expected to function as natural forests (Park et al, 2018; Nytofte & Henriksen, 2019), they are 

expected to have a large carbon storage potential as well. Because this research is part of the NMPF, 

a large variety of food forests is included. This study is the first in which aboveground carbon 

(AGC) stock was according to standardised protocols in Dutch food forests of different ages, with 

different former land uses, and on different soil textures. In essence, this is the first time that carbon 

stocks of food forests can be compared properly. As it is, this research can be seen as a baseline 

measurement on this subject, which can be built on in the future. The following research question 

is addressed in this study: 

How does aboveground carbon stock in Dutch food forests develop over time and which ecological factors affect this 

process? 

This study focusses on aboveground carbon stock only, no measurements or estimates on 

belowground carbon stock were made. The large heterogeneity between the included food forests 

enables the analysis of the effect of several variables on the AGC stock. One of those variables is 

the age of food forests. For most food forest, this study will be the first carbon stock assessment. 

Therefore, the current carbon stock could not be compared to previous years, and the development 

of carbon stock could not be determined within one food forest. AGC stock of young food forests 

will be compared with the carbon stock of older food forests, taking differences concerning other 

variables into account. Besides their age, food forests are selected based on their soil texture, former 

land use and structural composition (see Section 3.1). The effect of these variables on AGC stock 

of food forests will be evaluated, complemented with the interaction between these variables. To 

what extent the carbon stock food forests is comparable to the carbon stock of natural food forests 

will be discussed as well. Furthermore, the carbon stock measured in this study will be compared 

to the results of a study on food forest soils, performed on the same selection of food forests in 

2019. Since forests influence their environment, an analysis of microclimate in food forests was 

made. Lastly, the suitability of measured properties (height, basal area, canopy closure and relative 

carbon stock of shrubs) to estimate aboveground carbon stock has been analysed. 
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For the sake of clarity, the broader scope of the research question was subdivided into several 

smaller-scale questions, namely: 

1. What is the relation between carbon stock and age of Dutch food forests? 
2. Does carbon stock vary between food forests with a different soil texture, former land use or structural 

composition?  
3. What is the relation between carbon stock of Dutch food forests and their microclimate? 
4. What is the relation between carbon stock and soil conditions in Dutch food forests? 
5. To what extent are basal area, maximum height, canopy closure and percentage of shrubs predicting 

aboveground carbon stock accurately? 
6. Does the carbon stock of Dutch food forests differ from that of natural forests in the Netherlands? 

 

1.1. Hypotheses 
The hypotheses concerning all six research questions mentioned above are briefly described in this 

paragraph. A more detailed explanation on these hypotheses can be found in the theory (section 2). 

1.1.1. AGC stock over food forest age 

As the trees and shrubs in a forest grow, the AGC stock will increase as well (Stephenson et al., 

2014). In general, the carbon accumulation of a forest follows biomass accumulation curve (Ciais 

et al., 2008; Birch 1999), consisting of an exponential increase first, followed by a saturation 

(sigmoid). No scientific studies have been performed on the development of AGC stock in food 

forests before, but food forests are hypothesised to function as a forest and therefore carbon 

accumulation curves of food forests are expected to be comparable to these of natural forests. It is 

hypothesised that the AGC stock of food forests increases over time, following a sigmoid model. 

1.1.2. Aboveground carbon stock per former land use, soil texture and structural 

composition 

Plant growth rates, and therefore carbon accumulation rates (Stephenson et al., 2014) are highly 

influenced by soil and environmental conditions (Basset et al., 1964, Sullivan et al., 2015). Clay soils 

are moister and nutrient richer than sand soils (Brown, 2007). Therefore, a larger AGC stock is 

expected in food forests on clay soils than in food forests on sand soils. Former land use is expected 

to influence AGC stock as well. Former forests have a larger initial carbon stock and are therefore 

expected to have a larger mean AGC stock than former arable lands and grasslands. Since microbial 

communities are more developed and diverse in grasslands than in arable lands (Schulte et al., 2005; 

Girvan et al., 2004), plant growth rates are expected to be higher on former grasslands than on 

former arable lands. Lastly, a dispersed food forest is expected to include more positive interspecific 

interactions than an alleys-design and therefore plant growth rates and AGC stock are expected to 

be higher in dispersed food forests than in food forests with alleys (Morin et al., 2011; Palandrani, 

Battipaglia & Alberti, 2020). In short, AGC stocks is expected to be influenced by all three categorical variables: 

soil texture, former land use and structural composition. 

1.1.3. Food forest microclimate 

Temperature and humidity are both significantly influenced by forest vegetation (Lin & Lin, 2010). 

As food forests are expected to function like a forest (Park et al, 2018; Nytofte & Henriksen, 2019), 

the same effect is expected in food forests. Significantly lower temperatures and higher humidity levels are 

expected inside food forests, compared to the outside conditions and these differences are expected to increase as 

aboveground carbon stock rises. 



 16 

1.1.4. Influence of soil variables on aboveground carbon stock 

Plant growth is positively influenced by nutrient and water availability and an extensive and diverse 

microbial community (Bassett, 1964; Sullivan et al., 2015; Craswell & Lefroy, 2001; Bot & Benites, 

2005). Due to higher plant growth rates, a larger mean AGC stock is expected in presence of these 

favourable conditions. Furthermore, as a forest develops, the soil conditions change (Johnson & 

Wedin, 1997). The soil conditions of food forests with a large AGC stock are therefore expected 

to be significantly different from soil conditions of food forests with a small AGC stock. It is 

hypothesised that AGC stock is significantly correlating with all soil conditions included in this research. 

1.1.5. Elements of aboveground carbon stock calculations 

A wide range in AGC stock is possible concerning one of these variables, as trees and food forests 

are not expected to grow and develop similar. Therefore, calculations including all three variables 

are expected to be most accurate. Since allometric equations prefer the exclusion of height over 

the exclusion of basal area (Verschuyl et al., 2018), basal area is expected to describe AGC stock 

more accurate than maximum height. Canopy closure is not even included in commonly used 

allometric equations (Verra, 2020; UNFCCC, 2013) and is therefore expected to explain variation 

in AGC stock worse than the other two variables. In short, it is hypothesised that models including all three 

variables are explaining more variation in AGC stock and that basal area is the more accurate than maximum 

height and canopy closure. 

1.1.6. Food forests versus natural forests 

In the climax stage of succession, the crown of a forest will almost completely be closed 

(Sigurdsson et al., 2015). In general, food forests are expected to be designed without a complete 

closed canopy layer (Green Deal, 2019; Jennings, Brown & Sheil, 1999), in order to provide the 

herbaceous and shrub species with a sufficient light availability (Nytofte & Henriksen, 2019). Since 

most aboveground carbon is stored in the largest canopy trees (Stephenson et al., 2014; Janssen et 

al., 1999), the carbon stock of food forests is not hypothesised to reach the carbon stock of natural forests. 
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2. Theory 
In this section, background information on several aspect was given. First, the Dutch national 

monitoring program food forests (NMPF) was briefly described because this study was part of this 

program. Next to this, some information on the Verified Carbon Standard (VCS) was given. The 

methodology on estimating aboveground carbon stock is mainly based on this standard. Lastly, a 

brief review on existing literature was given concerning all sub questions. 

2.1. Dutch National Monitoring Program Food Forests 
The Dutch National Monitoring Program was established by the Green Deal Food Forests in 2019. 

The Green Deal food forests is a cooperation between 25 stakeholders in order to join forces on 

the development of food forests in the Netherlands. These stakeholders included authorities (both 

ministries and provinces), multiple non-governmental organisations, the Dutch food forest 

foundation (Stichting Voedselbosbouw Nederland) and the research institutions NIOO (Dutch 

Institute for Ecology) and Wageningen University and Research (WUR). The goals of the Green 

Deal Food Forests include among other things the exchange of practical experiences, the 

organisation of renewed legislation and regulations concerning food forests and the bundling of 

research on food forests. The Green Deal Food Forests handles the following definition of a food 

forest: “A productive ecosystem, designed by humans, after the example of a natural forest, including a high diversity 

on perennial and/or woody species producing food (fruits, seeds, leaves, stems, et cetera). At least the following things 

are present: 1. A layer of canopy trees. 2. At least three of the other vegetation layers (smaller trees, shrubs, herbs, 

ground cover plants, underground crops and climbing plants) 3. A significant and active soil life. A food forest has 

a size of at least 0.5 hectares in an environment with high ecological values. A minimum size of 20 hectares is 

handled in an ecological impoverished environment.” (Green Deal, 2020). 

As part of this last goal, the NMPF was set up. This program facilitates large-scale and standardised 

research on all included Dutch food forests. At first, 18 food forests were included in this program, 

but this study already included 21 food forests and the goal of the NMPF is to grow and expand 

even further. As part of the NMPF, studies will be performed concerning multiple disciplines, 

including at least ecological, economic, and social assessments. These studies are intended to be 

linked together. For example, the study on soil conditions (De Groot, 2020) was used in this 

research.  

As mentioned before, this study was performed as part of the NMPF. This is the first large-scale 

assessment on aboveground carbon stocks of food forests in the Netherlands. It is the intention 

to repeat the measurements on AGC stock in the following years, making use of the same 

methodologies.  

2.2. Verified Carbon Standard 
The Verified Carbon Standard (VCS) is a standard for the certification of carbon emission 

reductions. The VCS is controlled by the non-profit organisation Verra (Verra, 2020) since 2005. 

It is the most widely applied standard on carbon stock assessments (Verra, 2020). Other frequently 

used standards are the Gold Standard, which is mostly used by non-governmental organisations 

and Plan Vivo, which is mainly used in developing countries. These methodologies are less complex 

and expensive than the Verified Carbon Standard, but therefore also less accurate. 

The VCS uses the methodologies composed by the United Nations Framework Convention on 

Climate Change (UNFCCC), which are called Clean Development Mechanism (CDM). The CDM 

methodologies are widely accepted to be one of the most accurate methodologies on carbon stock 

assessments. Multiple methodologies have been developed, for different kind of land types and 
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assessments. The CDM methodology for both small-scale and large-scale afforestation and 

reforestation projects was determined to be most suitable for food forests and were therefore used 

in this research. However, the existing methodologies of the CDM have slightly been adjusted in 

order to enhance suitability for food forests. 

Verra has set up over 20 validation and verification bodies across the world, to validate the 

composed methodologies and standards. Hardly any scientific and independent reviews on the 

general accuracy of the VCS are available, even though some studies did validate specific parts of 

the methodologies (Needelman et al., 2018; Von Avenarius et al., 2018; Sharma et al., 2012). 

However, the VCS is frequently cited and used in a large variety of scientific papers. The VCS is 

therefore assumed to be accurate and the AGC stocks found in this research are well comparable 

to those of other studies that used the same methodology. It is however important to mention that 

no standard methodology is available for carbon stock assessments on food forests yet and one 

could argue whether an adjustment on the current methodologies is desirable. 

2.3. AGC stock over food forest age 
Aboveground carbon stock is correlated with forest age (Stephenson et al., 2014). Older food 

forests are therefore expected to have a larger carbon stock than younger food forests. The curve 

of this carbon accumulation depends on tree growth rates (Stephenson et al., 2014), which are not 

constant over time (Birch, 1999; Brown, 1984). While growth rate of some tree species (for example 

increases as trees getting older, other species have a decreasing growth rate over age (Johnson & 

Abrams, 2009; Stahl & Urbance, 1990). Despite of these species-specific growth curves, a flattening 

of biomass expansion is found in at forest level (Ciais et al., 2008; Birch, 1999). Because of this, the 

accumulation of carbon stock over the years is presumed to follow a sigmoid curve, as seen in 

temperate forests before (Dewar, 1990), mainly following the plant growth curve. The exact course 

of this curve, including the maximum sequestration rate and saturation level are dependent on 

planted species and climatic conditions and therefore generally hard to predict (Birch, 1999).  

2.4. Aboveground carbon stock per former land use, soil texture and structural 

composition 
Soil texture is hypothesised to influence carbon stock in food forests, since clay and sandy soils 

differ in amount of moisture, humus, and nutrients (Brown, 2007). Tree growth is positively 

influenced by a higher amount of moisture and nutrient availability (Basset et al., 1964; Sullivan et 

al., 2015), although another study nuances this (Besnard et al., 2018). Food forests with higher tree 

growth rates built up carbon stocks more quickly. Therefore, food forests on clay soils are expected 

to have a larger carbon stock than food forests on sandy soils. Nutrient and moisture availability 

in loam soils are the intermediate between clay and sandy soils (Brown, 2007). Because of that, one 

could argue that the carbon stock on loam soils lays between clay and sandy soils as well. However, 

an excessively high moisture content could also negatively influence growth rates of trees (Predick, 

Gergel & Turner, 2009). These extreme conditions might presume in some of the selected food 

forests. In the end, the clay soils are hypothesised to have the largest carbon stock, followed by 

loam and sandy soils, respectively. 

Former land use (FLU) is expected to influence carbon stock as well. Food forests cultured in a 

production forest or orchard will have a larger carbon stock than food forest cultured on arable 

and grasslands initially. Grasslands are more diverse and less exhausted than arable lands and will 

therefore provide more soil related ecosystem services, such as moisture retention (Schulte, et al., 

2005). Moreover, grasslands have a larger and more diverse microbial community (Girvan et al., 

2004). Tree growth and aboveground carbon sequestration are positively influenced by the amount 
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of moisture and soil organic matter (McLauchlan, Hobbie & Post, 2006). Food forests on former 

grasslands are thus expected to have a larger carbon stock than food forests on former arable lands.  

Two main structural compositions of food forests are distinguished: dispersed-designs, in which 

multiple crop species are planted mixed together and alleys-design, in which crops are planted in 

rows per species in order to maximise harvest usability. The effect of structural composition on 

the carbon stock of food forests is uncertain. In principle, plant species are able to encourage each 

other, which leads to a positive relation between plant diversity and carbon storage (Morin et al., 

2011; Palandrani, Battipaglia & Alberti, 2020). The more a food forest functions like a natural 

forest, the more positive interspecific interactions the system includes and the more carbon the 

food forest will store. Two structural compositions are distinguishable: dispersed and alleys (see Section 

3.1.1). In a dispersed food forest, multiple species are planted together and therefore looks more 

like a natural forest than a food forest with an alley-design. The alley-design is in turn more user-

friendly concerning both harvest and management. Dispersed food forests are due to its design 

hypothesised to include more positive interspecific interactions and therefore store more carbon 

than food forests with alleys. However, there is no scientific evidence to substantiate this 

hypothesis yet. 

2.5. Food forest microclimate 
While a forest is growing, the effect of the ecosystem on the environmental conditions will increase 

as well (Lin & Lin, 2010). The presence of forests (or even individual trees) will lower air and soil 

temperature (Konarska et al., 2016; Midrexler, Zhao & Running, 2011), and have an increasing 

effect on air humidity (Van Noordwijk et al., 2014) in urban regions and in cities. Comparable 

effects are shown in agroforestry systems in Europe (Gosme et al., 2016). However, natural 

grasslands have a cooling effect on temperature as well (Shen et al., 2016), so what is the effect of 

planting a food forest on a grassland or arable land? During heatwaves in Europe, forests had a 

larger cooling effect in the long run than grasslands (Teuling et al., 2010) and forests are assumed 

to be the major temperature buffering ecosystems in the world (Dalen, 2017). In this research, the 

temperature and humidity of the food forest are compared to the situation just outside the food 

forest. Although most food forests will be compared to grasslands in this way, a lower temperature 

and higher humidity caused by the trees, shrubs and/or dense vegetation is hypothesised. These 

differences are expected to increase with the development of the food forest (i.e. with carbon 

stock). 

2.6. Influence of soil variables on aboveground carbon stock 
Several significant correlations between aboveground carbon stock and soil conditions of food 

forests are expected. First, soil nutrient and water availability in food forests with FLU category 

forest significantly differ from soil conditions on former arable lands and grasslands (De Groot, 2020). 

Since food forests with FLU forest are expected to have a larger AGC stock, a significant correlation 

between carbon stock and nutrient and water content is hypothesised. Because a higher soil organic 

matter (SOM) content induces a high moisture and nutrient availability (Craswell & Lefroy, 2001; 

Bot & Benites, 2005), carbon stock is presumed to be correlated with soil organic matter as well. 

As mentioned before, food forest age is hypothesised to be correlated with carbon stock. Because 

of this, a correlation between food forest age and these soil conditions is expected as well, although 

former land use might influence this. In a principal component analysis (PCA), the components of 

the correlating variables are foreseen at the same axis. Concretely, the amount of soil organic matter 

and aboveground carbon stock are hypothesised to be depicted in the same direction in the PCA. 

The variable age is expected to point in the same direction as AGC stock and therefore in the same 

direction as the amount of SOM as well. Since former land use might strongly influence the 
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correlation between age and SOM (De Groot, 2020), this effect might only be present when 

excluding food forests with FLU-category forest. Note that SOM is expected to be correlated with 

nutrient and water availability (Craswell & Lefroy, 2001; Bot & Benites, 2005), and that these arrows 

are hypothesised to be in the same direction as well. 

2.7. Elements of aboveground carbon stock calculations 
As food forests grow, the percentage of their canopy closure will increase (Sigurdsson et al., 2005). 

With an increased canopy closure, the light availability for the understory will decrease (Jennings, 

Brown & Sheil, 1999). Since carbon stock will be correlated to tree growth, canopy closure in food 

forest is expected to be correlated to carbon stock. In a natural forest, crown canopy is entirely 

closed after 15 years on average (Sigurdsson et al, 2005). Therefore, the correlation between carbon 

stock and canopy closure only applies for the first stadium of the food forest, until complete closure 

is accomplished. Note that the closure rate of the canopy is not consistent for all food forests since 

food forests are expected to have a variation in growth rate (Bassett, 1964; Sullivan et al., 2015) and 

the design (i.e. the proportion of canopy trees). However, it is assumable that canopy closure 

becomes relatively constant after a certain number of years (whether it is 15, or 20, or even more). 

Furthermore, some food forests might not reach a 100% canopy closure, as their design might 

prefer a relatively wide light availability (Green Deal, 2019; Jennings, Brown & Sheil, 1999). Again, 

this depends on the design and management of the specific food forest, making it hard to 

distinguish one specific curve of canopy closure over AGC stock. In short, canopy closure is 

hypothesised to be closely related to AGC stock for young food forests (excluding these with FLU-

category forest), but it might be hard to use canopy closure as explanatory variable when forests 

become older. 

Lastly, the relation between AGC stock and multiple properties of the food forests (canopy closure, 

height, basal area, and relative amount of carbon stored in shrubs) will be analysed. The relative 

presence of shrubs will decrease in a developing forest, based on the principles of forest succession 

(Urban & Shugart, 1992; Brooks et al., 2012). In common carbon stock measurements, shrub 

carbon stock is excluded from the methodology (Verra; UNFCCC, 2013). Since a food forest 

principally contains multiple layers (Green Deal, 2019), the relative amount of carbon stored in 

shrubs is assumed to be higher than in natural forests. Although the relative carbon stock of shrubs 

will reduce as total carbon stock increases (Urban & Shugart, 1992), it is hypothesised to remain a 

significant fraction of total carbon stock and will therefore be necessary part of carbon stock 

measurements in food forests. Canopy closure, maximum height and basal area are all expected to 

largely explain variation in AGC stock. However, none of these variables is expected to be 

appropriate to predict AGC stock accurately. Therefore, a combination of these variables is 

hypothesised to be necessary to determine AGC stock properly. Though it is interesting to 

determine which variable is most precisely describing AGC stock and to what extent this variable 

can be used for quick, rough estimates of carbon stocks of food forests in future. 

2.8. Food forests versus natural forests 
On average, a Dutch forest has an AGC stock of 59 Mg C ha-1 (Nabuurs & Mohren, 1993). Food 

forests are not expected to approach the aboveground carbon stock of more natural forests 

(Schafer, Lysák & Henriksen, 2019. Food forests in general include both shrub and herbaceous 

crops in their design, requiring a certain light availability (Green Deal, 2019; Nytofte & Henriksen, 

2019). The density of canopy trees is therefore expected to be less than in a more natural forest. 

Since most carbon is stored in the canopy trees (Stephenson et al., 2014; Janssens et al., 1999), the 

maximum carbon stock of food forests is expected to be lower than the maximum carbon stock 

of natural forests (due to this design; Lehmann et al., 2019; Schafer et al., 2019). Note that there are 
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many possible food forest designs and that some food forests might develop a completely closed 

canopy, accepting a low light availability at forest floor. The oldest food forest in the Netherlands 

is 22 years old, which is significantly lower than the age of forests in the study of Nabuurs & 

Mohren (1993), that had a mean age of 50 years. The maximum carbon stock in food forests in 

this research is therefore hypothesised to be more similar to the food forest in Devon, UK, which 

has an age of 23 years and an aboveground carbon stock of 34 Mg C ha-1 (Lehmann et al., 2019). 

The aboveground carbon stock of tropical home gardens and agroforestry systems is not expected 

to be reached in food forests in the Netherlands, since aboveground carbon stocks in temperate 

forests do not equal carbon stocks in tropic forests in general (Malhi et al., 1999). It is important to 

mention that the proportion of carbon stored in AGC carbon stock is significantly higher in tropic 

forests (Malhi et al., 1999; Trumbore, 1993; Rooduijn et al., unpublished data). If the AGC stock of 

temperate (food) forests is smaller than its tropic equivalent, this does not automatically mean that 

the ratio of total stored carbon (aboveground and belowground) is comparable.  
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3. Methods 
As mentioned before, this study is part of the Dutch national monitoring program food forests 

(NMPF). Since this is the first large-scale study on carbon stock in Dutch food forests, an 

appropriate method had to be developed. These methods are mainly based on similar existing 

research, adapted for food forests in the Netherlands based on the expertise of specialists. At all 

times. The feasibility of the methods as part of the NMVB must always be considered. The used 

methods are therefore a compromise between the most accurate and the most accessible way of 

estimating the carbon stock of a food forest. However maximum accuracy under given 

circumstances is pursued. In this section of the report, the following methodological aspects are 

described:  

1. Plot selection 

2. Data collection 

3. Carbon stock calculations 

4. Data analyses 

3.1. Study site and plot selection 
This research includes 21 food forests across the Netherlands (see Figure 1). This selection has been 

made by the Green Deal Food Forests, among other things based on age, location, soil texture and 

former land use. An overview of included food forests, including these variables can be found in 

Appendix 1; see Figure 2 & 4 for impressions of a variety of included food forests. Plots of 10x10m 

were used for the carbon stock measurements since this plot size is most adopted by ecologists for  

 

 

 

 

 

 

 

 

 

 

 

 

many years (Bourdeau, 1953). To determine the location of the measurements, all food forests were 

divided into a grid of plots of 10x10 metre in QGIS (see Figure 1; QGIS, 2020). Plots that were 

partially located outside of the food forest border are deleted. Furthermore, plots (partially) located 

Figure 1: Sampling locations of the 21 food forests. a) Location of the 21 food forests in the Netherlands. 
Food forests are located in six provinces: Noord-Holland, Zuid-Holland, Flevoland, Utrecht, Gelderland, Noord-
Brabant and Limburg. Exported from Google My Maps. b) Grid and selected sampling plots for food forest 
Roggebotstaete. Red squares represent 10x10m sampling plots. Blue and grey areas represent two zones based on 

soil texture. Yellow codes and blue dots refer to soil measurement locations of the NMPF. Exported from QGIS. 

a                                                                              b 
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in a pond, at a paved path or at buildings are excluded from the grid. Using a random selection tool 

in QGIS, the requested number of plots were selected randomly out of all available plots in the 

grid (see Appendix 2 for the random selection protocol).  

The number of plots depends on two things. First, the size of the food forest determines the 

number of measuring plots. In the most desirable scenario, the number of measured plots per 

hectare is equal for all food forests. The appropriate number of plots is determined at three plots 

ha-1 (CDM, 2010). Of course, a greater sampling effort would increase the accuracy of the 

measurements, however this is not accessible in the national monitoring program. Therefore, the 

minimum number of three and the maximum number of six measurement plots were allocated to 

the food forests. Since the size of most food forests included in this research is between one and 

two hectares, the ideal number of plots per hectare has been used in most of the sampling locations. 

Second, some of the food forests were divided into zones (see section 3.4. which food forests were 

split up). In this scenario, the number of measurements plots will be three plots per zone, in 

dependent of the zone size. 

  

Figure 2: Photographs of four food forests with a variety in age. a) Food forest Schijndel Hardekamp located in 
Schijndel, Noord-Brabant with an age of 1 year. b) Food forest Mijn Stadstuin, located in Amsterdam, Noord-Holland, 
with an age of 5 years. c) Food forest Ketelbroek, located in Groesbeek – De Horst, Gelderland, with an age of 12 

years. d) Food forest Sualmana, located in Swalmen, Limburg, with an age of 22 years.  

a                                                     b 

c                                                     d 
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3.1.1. Determination of food forest zones 

Food forests are generally characterised by a large heterogeneity (Jacke & Toensmeier, 2005). By 

using random selection and a minimum number of three plots per food forest, the measured carbon 

stock was assumed to be representative for the carbon stock of the entire food forest, despite of 

the heterogeneity. However, in some scenario’s, the food forests included in this research were 

divided into multiple, clearly distinguishable zones. One could argue that every food forest is 

divisible into zones, and in essence this argument is true. Therefore, several scenario’s in which it 

might still be useful to split up the food forest were determined. Using these zones, differences 

within one single food forest could be analysed. Ideally, two of these zones are mostly under the 

same conditions, except of one or two of these conditions. In this way, it might be easier to analyse 

the effect of single variables on the carbon stock of food forests.  

Food forests were divided in zones based on one of the following five variables. The exact protocol 

concerning zone selection can be found in Appendix 2.5. 

- Age of the food forest 
- Former land use 
- Soil texture 
- Elevation 
- Structural composition 

 

3.1.2. Reference plots  

Although the main objective of this research is to describe the differences in carbon sequestration 

between food forests, the carbon stock in food forests was compared to the carbon stock of natural 

forests as well. Although it was impossible to determine whether a forest is a natural forest, it was 

interesting to compare its carbon stock with the carbon stock of food forests, especially those that 

were converted from a production forest or arboretum (i.e. with former land use ‘forest’). 

Therefore, three measuring plots were selected in forests, located next to (or close to) a food forest. 

Since it was hypothesised that the carbon stock in forests depends on soil texture (Bassett et al., 

1964; Sullivan et al., 2015; Brown, 2007), one reference forest was selected for every soil texture 

class each (three in total). To prevent the sampling effort for being too large, only one plot was 

measured in all reference forests each. Since the heterogeneity in ‘natural forests’ is lower than in 

food forests (Asase & Teteh, 2010; Brüning et al., 2018), the observations were assumed to be quite 

representative, even by using one measuring plot only.  

As in the food forests itself, the plots were selected randomly in the reference forests as well. Due 

to the absence of detailed maps (which were necessary for grid selection in QGIS), the methods 

for random selection in reference forests were different. From one corner of the forest (by default 

the south-eastern corner), one started walking northwest for one minute. After one minute, a 

stopwatch was randomly stopped, and the first two decimals were noted. These numbers had to 

be walked north and west respectively, to reach the north-eastern corner of the measuring plot. 

This method is commonly known as a convenient way to select a sampling plot randomly and to 

prevent for subjective decisions (Maltamo et al., 2011; Ruotsalainen et al., 2019; Wilson, 2005). The 

methods used in the reference plots were the same as in the food forest plots. 

3.2. Data collection 

3.2.1. Measurements on trees and shrubs 

In the 100 square metres plot, all trees and shrubs are measured. Since the results had to be 

comparable to other studies, the methods included in the verified carbon standard (VCS) and its 
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(Equation 1) 

measurements (CDM) are used as much as possible (Verra; UNFCCC, 2013; UNFCCC, 2010). 

However, these standards are designed for studies in production forests and reforestation projects. 

A food forest design generally contains a larger number of shrubs than a reforestation or 

production forest (which are mostly focussed on maximum carbon storage). Therefore, shrubs 

were added to the methods. Furthermore, the VCS only includes trees from (at least) five 

centimetres of diameter at breast height (1.30m above the soil). Since most of the food forests in 

this research were only several years old, trees were included from five millimetres of stem diameter. 

In this way, the development of carbon stock in the first years of the food forest was estimated 

more accurately.  

All measurements on aboveground carbon stock are visualised in Figure 3. Following the CDM 

methodology, all trees, and shrubs of which the stem was over half located within the plot were 

included (doubtful cases were excluded; UNFCCC, 2013). As shown there, the measurements are 

not the same for trees as for shrubs. The calculations for carbon stock in shrubs required other 

components than those of trees. As both calculations were different, it was important to 

standardise the way of calculating the carbon stock of each species. Prior to the fieldwork, a list of 

species has been composed to determine whether that species is a tree or a shrub, based on their 

dominant growth form (see Table A3). Even if a so-called shrub species has grown like a tree in a 

specific situation, that individual has been measured as a shrub. In this way, the carbon stock has 

been estimated equally in all food forests. 

Carbon stock in tree calculations are mainly based on the diameter of the tree stem at breast height 

(1.30m). The diameter was measured using a diameter tape and perpendicular to the axis of the tree 

stem (note that this was not always horizontal). Since young trees were included in this research as 

well, the stem could be branched-off at a height lower than 1.30 metres. If there was still one 

upward growing stem, this stem was measured, despite of the branching of the stem. If there was 

no central stem at 130 centimetres, the diameter of the stem was measured at 60 centimetres or 

lower alternatively. If a tree was growing out of multiples stems from the ground, these trees were 

measured as separate trees. The height of the tree was determined using an inclinometer. The 

inclinometer has given an angle, which is converted to the height of the tree, using the following 

formula: 

𝐻 = (tan 𝛼 ∙ 𝐷 + 𝐿) ∗ 100 

where:  

𝐻  = tree height in centimetres 

𝛼   = angle given by the inclinometer 

𝐷  = distance to the tree in metres (which was fixed at 10m) 

𝐿  = eye level of the observer in metres (which was fixed at 1.65m) 

 

It was important that there were no differences in altitude between the measuring point and the 

tree. When trees were smaller than 200 centimetres, it was easier and more accurate to measure 

tree height directly, instead of using an inclinometer.  
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Figure 3: Scheme of all measurements that have been taken on all trees and shrubs within the 10x10m plots.* When tree 

stem was branched off at 130 centimetres, stem diameter was measured at 60 centimetres, or just below the first branch point. Tree 

and shrub species were determined using Heukels’ Flora van Nederland (Van der Meijden, 2005). 

The measurements for shrubs were more complex than those for trees, since allometric equations 

of shrub biomass require more variables (Verschuyl et al., 2018). First, shrubs carbon stock 

calculations are dependent of their crown cover. Since the crown of shrubs could grow ellipse-

shaped, the shrub crown was measured over two perpendicular axes. Furthermore, it was also 

important to document the number of stems. If shrubs had more than three stems from the 

ground, only the three thickest stems were documented (to prevent the methods for being too 

time-consuming) and the basal area of the shrubs were calculated later, based on the available 

information. The diameter of the stems was preferably measured at a fixed height. However, due 

to the large variety of branching forms of shrubs, this was hardly applicable. There was tried to 

measure stem diameter in the range of 10-30cm, but extremely low ramifications could make this 

impracticable. The height of shrubs was mostly measured directly since most shrubs are less than 

200 centimetres in length. Despite of this, it was recommended to use an inclinometer for the larger 

shrubs as well.  

3.2.2. Microclimate measurements  

In addition to the aboveground caron stock measurements, the microclimate of the food forests 

was observed. For this microclimate analysis, the temperature, humidity, and light availability were 

documented. Since light availability is directly correlated to the closure of the canopy layer 

(Jennings, Bron & Sheil, 1999), the amount of available light was represented by the percentage 

closure of the canopy. After the application Canopy Capture (Patel, 2018) was tested during the 

preparatory weeks, this application was assumed to be precise enough to measure canopy closure. 

Although this made the measurements more accessible, this assumption should be tested in future 

research. The application was opened, and the mobile device was held horizontal at 1.5 metres, 

after which a picture was taken. Although the application came up with a percentage, this should 

not be adopted immediately. Especially in changeable weather conditions, this percentage might 

be incorrect. Therefore, the picture was always checked, and the correctness of the application 

outcome was verified. Since the closure of the canopy layer could vary significantly within several 

metres, the canopy closure was measured at three spots in each plot, namely the northwest corner, 

1. Tree height 

2. Stem diameter at 130cm* 

3. Species of the tree 

1. Shrub height 

2. Crown diameter in two dimensions 

3. Number of stems with diameter > 5mm 

4. Diameter of three thickest stems 

5. Species of the shrub  
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(Equation 2) 

 

(Equation 3) 

 

(Equation 4) 

the southwest corner, and the centre of the measuring plot. These three percentages were averaged 

to determine the canopy closure of this plot. 

The temperature and humidity of the air were measured using a thermo hygrometer (Lascar 

Electronics). This device automatically registered both temperature and humidity each ten minutes. 

Since the effect of the food forest vegetation on these conditions was more interesting than the 

absolute temperature and humidity itself, a control measurement outside the food forest was taken 

as well. This device was placed outside of the food forest, within 20 metres of the food forest 

border. Furthermore, this device was not placed on paved paths or roads and not overshadowed 

by any trees. The other device was used for the measurements inside the food forest. This device 

was placed in the centre of the measuring plot. Because of the large heterogeneity within food 

forests, it was necessary to translocate the thermo hygrometer along all measuring plots. The exact 

moment of picking up the thermo hygrometer were documented, since the device is registering 

constantly. Note that it was important to minimalise the time of carrying the device, to prevent the 

data from being influenced. The data of moments in which the device was not located in the 

vegetation, for example during moving moments, were manually removed from the database after 

the measurements were completed. 

For two reasons, the closure of the canopy was measured as well. First, canopy closure is indicating 

light availability for herbaceous vegetation. And second, canopy closure is hypothesised to be 

related to aboveground carbon stock. In each sampling plot, canopy closure will be measured three 

times: the first in the plot centre, the second one metre from the north western corner towards the 

plot centre and the third one metre from the south eastern corner towards the centre of the plot. 

Canopy closure will always be measured at 1.50m. The application Canopy Capture (Patel, 2018) 

was determined to be as accurate as a densitometer during test measurements and therefore 

appropriate to be used in this research.  

3.3. Carbon stock calculations 
After measuring all required variables, the carbon stock of aboveground biomass was calculated. 

To do so, allometric equations were used. Furthermore, it was necessary to determine the wood 

density of all species observed in the food forests. The ICRAF Database combines many databases 

and studies on wood density and is therefore the most complete available database (World 

Agroforestry, 2020). By default, this database was used for all wood densities used in this research. 

If species specific wood density was unknown, the mean wood density of the genus where this 

species belongs to was used instead. If any wood density of that genus was missing as well, the 

mean density of the plant family was used. In the most unfavourable scenario of missing an entire 

family in the database, the mean wood density of all species in the database was used.  

3.3.1. Tree allometric equations 

To translate the tree dimensions (i.e. height and stem diameter) to an amount of carbon stored in 

aboveground biomass, the following allometric equations were used: 

𝐶TOT =  
1

106
∙

∑ 𝐶TREE,j

𝐴
 

𝐶TREE,j =  
44

12
∙ 𝐵TREE,j ∙ 𝑐𝑓 

𝐵TREE = 𝑉 ∙ 𝐷𝑤j ∙ 𝐵𝐸𝐹 
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(Equation 5) 

where: 

𝐶TOT  = amount of stored CO2 in aboveground biomass (t CO2 ha-1) 

𝐴  = sample area size(m2) 

𝐶TREE,j  = amount of stored CO2 in aboveground biomass of species j (g) 

𝐵TREE,j  = aboveground tree biomass of species j (g) 

𝑐𝑓  = carbon fraction of tree biomass  

𝑉  = volume of tree stem (cm3) 

𝐷𝑤j  = species specific wood density of species j (g cm-3) 

𝐵𝐸𝐹  = biomass expansion factor 

 

The volume of the stem was calculated using the formula of the volume of a cylinder (𝜋 ∙ 𝑟2 ∙ ℎ), 

in which h is the tree height in cm and r is half the stem diameter in cm. Genus or family mean 

wood densities were used in absence of species specific wood densities (as described above). The 

default biomass expansion factor of 1.15 and the default carbon fraction of 0.47, as used in the 

CDM methodology (UNFCCC, 2013), were used for all species in this research. To obtain the 

amount of stored carbon dioxide, the stored carbon was multiplied with 
44

12
 , which is the relative 

molecular weight of carbon dioxide to carbon. In the end, the amount of stored carbon dioxide in 

all trees was added together and divided by the sampled area size (which depended on the number 

of measuring plots). The amount of carbon dioxide was divided by 106 to convert the unit of stored 

CO2 from g ha-1 to the commonly used t ha-1 (or Mg ha-1). 

 

3.3.2. Shrub allometric equations 

Where the allometric equations of tree biomass and carbon storage are widely used and 

standardised in the Verified Carbon Standard, the carbon stock in shrub biomass is less used in 

carbon stock estimated. To calculate the aboveground biomass in shrubs, allometric equations 

based on a research at the Oregon Coast Range are used (Verschuyl et al., 2018). In this research, 

carbon stock in shrubs is determined using destructive methods and predictive models based on 

the dimensions of the shrubs are made. The climate of the Oregon Coast Range is only slightly 

different from the climate in the Netherlands (NCEP, KNMI) and the species included in their 

research are largely corresponding or comparable to the species found in food forests. 

Furthermore, Verschuyl et al. conclude that these allometric equations are applicable in other, 

comparable fields. Therefore, these allometric equations are assumed to be most suitable available 

equations.    

As we do, Verschuyl et al. included all stems from 5mm in diameter size. However, stem diameters 

were measured at a fixed height of 15cm, while the measuring height was varying in this research, 

mainly due to differences in growth form of shrubs. The equations included three variables of 

shrub dimensions: shrub height (HT), crown area (CA) and basal area (BA). The height of shrubs 

was measured directly in food forests. To determine the crown area, the measured crown diameter 

in both directions was implemented in an ellipse formula: 

𝐶𝐴 =  𝜋 (
𝐶𝐷𝑥

2
) (

𝐶𝐷𝑦

2
) 

where: 

𝐶𝐴  = crown area in m2 

𝐶𝐷𝑥  = crown diameter in dimension x in m 

𝐶𝐷𝑦  = crown diameter in dimension y in m 
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(Equation 6) 

(Equation 7) 

Shrub basal area was not directly measured in food forests, due to limited time and the objective 

to make the methods accessible. However, the predictive capacity of the models that included BA 

were higher than those that were only based on CA and HT (R2 of 0.93 and 0.63-0.68 respectively). 

Since the three thickest stems were measured, the BA was easily calculated for shrubs with three 

or less stems by summing up the area of each stem (𝑉STEM =  𝜋 ∙ 𝑟2), in which r is half the stem 

diameter. For shrubs with more than three stems, a linear growth model in Microsoft Excel was 

used to estimate the BA (Microsoft Corporation, 2018). This model assumed a linear decrease of 

the stem diameter size. This decrease was calculated within the three thickest stems and using linear 

extrapolation, the diameter of the other stems was estimated. Since we have only counted stems 

with a diameter of more than 5mm, all estimated basal stem areas of less than 1.989 cm3, which 

corresponded to a diameter of 5mm, were manually set to a basal area of 19.635. All stem basal 

areas were summed up to obtain the estimated basal area of those shrubs.  

For some shrubs (less than 9% of all individuals), the number of stems and/or the diameter of the 

three thickest stems was undeniable. For these shrubs, the allometric equation without BA was 

used (Verschuyl et al., 2018), although the predictive capacity of this model was less than the model 

for the other shrubs. The following equations were determined to be the best predictive (Verschuyl 

et al., 2018), with a corresponding R2-value of 0.93 and 0.63-0.68 respectively: 

𝐵SHRUB = 1.1888 + 0.7292 BA + 0.30406 CA + 0.4185 HT 

𝐵SHRUB = 6.2855 + 1.1717 CA 

where: 

𝐵SHRUB  = Aboveground shrub biomass in g 

BA  = Basal area in mm2 

CA  = Crown area in m2 

HT  = Shrub height in m 

The equation without basal area as predictive variable, does not include shrub height as well, since 

the R2 of an equation with shrub height was lower than the equation shown above. The shrub 

biomass was converted into shrub carbon stock at the same way as this was done for trees, using 

Eq.2 and Eq.3. 

 

3.4. Categories of food forests conditions 
The main question of this research is how carbon stock accumulates over time in food forests. 

Therefore, it is necessary to determine the age of all food forests included in this research. 

Furthermore, the influence of both categorical variables soil texture and former land use on the 

carbon accumulation were investigated. In this paragraph, the categorisation of food forests based 

on their environmental conditions will be described. 

3.4.1. Former land use  

The selection of food forests included in the national monitoring program (and therefore in this 

research) was amount other things based on their former land use. In essence, what is the history 

of the land management in the years prior to the conversion into a food forest. To make it more 

understandable, the focus was on the last several years and further history was ignored. The former 

land use was expected to have a significant influence on the initial soil conditions, and therefore 

on the growth of food forest vegetation within the first years (Schulte, et al., 2005; Girvan et al., 

2004; McLauchlan, Hobbie & Post, 2006).  
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As shown in Table 1, a large variety of former land use types was included in the dataset (11 types 

in total). Since this is hard to use in statistical analysis and there were only slightly differences 

between some of them, all these former land uses were united in three categories: grassland, arable 

land, and forest. The FLU category forest was characterised by the presence of trees and/or shrubs 

even before the food forest was planted. The difference between grassland and arable land was a 

bit more complex. The FLU category arable land was defined by lands with an intensive land 

management for growing crops, with or without the usage of pesticides and fertilizers. Grasslands 

were less intensively used and were mainly characterised by the grazing of livestock. Note that the 

number of food forests in the second column is higher than the number of food forests included 

in this research (23 and 21 respectively), since some of the food forests had multiple former land 

uses.   

Table 1: Categorisation of 11 former land uses into three former land use categories: Grassland, arable land, and forest. 

Former land use category Number of food 
forests 

Included former land uses 

Grassland 7 (30%) Production grassland, natural grassland, horse field, sheep 
pasture, recreation field 

Arable land 10 (44%) Arable land (unspecified), corn field, grain field 

Forest 6 (26%) Arboretum, production forest, organic orchard  

 

3.4.2. Soil texture  

As former land use did, the difference in soil structure was one of the criteria on which the selection 

of food forest was based. There is a large variety of soil structures throughout the Netherlands. In 

the fall of 2019, the NMVB started analysing soil conditions in all food forests. Based on the 

amount of sand, silt and lutum particles in the soil samples, the food forests were divided in twelve 

categories, in a gradient from sand to clay (see Table A1 & A2). As for former land use, these soil 

textures were summarised in three classes: sand, loam and clay. The criteria of placing a certain soil 

in that specific category are shown in the third column of Table 2. These categorising is based on 

the NRCS soil texture triangle (Groenendyk et al., 2015; see Figure A1). Again, the number of food 

forests in the second column is higher than the number of food forests included in this research 

(23 and 21 respectively), since one food forest had both clay-zones and loam-zones (food forest 

Roggebotstaete). 

 

 

 

Figure 4: Photographs of three food forests with a variety in former land use. All three have an age of 2 years. a) Food forest 
Groengenoten, located in Rucphen, Noord-Brabant; a former grassland. b) Food forest Schijndel Boschweg, located in Schijndel, 

Noord-Brabant; a former arable land. c) Food forest De Stomp, located in Westendorp, Gelderland; a former production forest. 

a                        b                c 
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Table 2: Categorisation of 13 soil textures into three soil texture classes: Sand, Loam, and Clay. Classes has been made 

using the NRCS soil texture triangle. 

 

3.4.3. Food forest age 

The third criteria on which food 

forests were selected is their age. 

By defining food forest age, one 

could analyse the carbon 

accumulation over time, as 

appointed in the main research 

question. There are several ways 

to define food forest age. In this 

research, food forest age is 

defined by the number of growing 

seasons since the first planting 

event. Since plants mainly grow in 

a specific growing season, which is roughly from April to August, it did not make a significant 

difference in growth whether the planting event took place in the fall or winter. Therefore, the 

number of growing seasons was preferred over food forest age in months. As shown in Figure 5, 

young food forests were over-represented compared to older food forests, though a broad age 

range was preferred by the NMPF. There are only two food forests older than six years in the 

Netherlands (Ketelbroek (12 years old) and Sualmana (22 years old)), which automatically caused 

the skewed shape.  

Food forests could have also been divided in zone, based on their structural composition. In 

general, two major structural compositions were distinguished. In some of the food forests, trees 

and shrubs were planted in rows. These so-called rational food forests generally used these rows as it 

increased the usability of the food forest during harvesting. In other food forests, species were 

planted through each other and looked more like a natural forest. These food forests are commonly 

known as romantic food forests. Although the terms rational and romantic are applied in food forest 

community, the terms alleys and dispersed will used instead in this research, in order to increase 

comparability with agroforestry literature. So romantic food forests were called dispersed food forests and 

rational food forests were called food forests with alleys. 

3.5. Data Analyses  
After all measurements, calculation and categorisation of the variables was done, the data was 

analysed. First, the effect of the four explanatory variables (age, former land use, soil texture and 

structural composition) on carbon stock was visualised and examined using bivariate analyses. After 

this was done, the effect of multiple of these variables interacting with each other was inspected 

Soil texture 
class 

Number of food 
forests 

Criteria of this classes (see Figure A1 for 
underlying triangle) 

Included soil textures 

Sand 9 (39%) > 70% of soil are sand particles and  
< 15% of soil are clay particles 

Sand, loamy sand 

Loam 9 (39%) < 52% of soil are sand particles and  
< 27% of soil are clay particles 

Sandy loam, loam, silty 
loam, silt 

Clay 5 (22%) > 27% of soil are clay particles or  
> 20% of soil are clay particles and 
< 27% of soil are silt particles 

Clay loam, sandy clay loam, 
silty clay loam, sandy clay, 
silty clay, clay 

       Figure 5: Distribution of food forest age across 133 sampling plots. 
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and carbon stock data was connected to soil data collected by the NMVB using a principal 

component analysis. The effect of management was checked by a study on the differences between 

zones within the same food forest. To conclude, the microclimate was analysed, and the 

development of succession was examined.  

All analyses described below were performed using the statistical program R (version 4.0.2) and 

RStudio (R Core Team, 2020). Unless explicitly described, all analyses were performed using the 

carbon stocks per sample plot.  

3.5.1. Bivariate analysis of explanatory variables 

Both FLU and soil texture were classified in three classes and were analysed in the same way. First, 

group averages were visualised in boxplots. The package ggplot2 was used in RStudio to derive these 

boxplots (Wickham et al., 2016). Whether the differences in carbon stock between these groups 

was significant could be tested by a one-way analysis of variance (ANOVA) using the car package 

(Fox & Weisberg, 2019). To use an ANOVA legitimately, the data should be normal distributed, 

and the residuals of the data should be homogeneous. These assumptions were tested using a 

Shapiro-Wilk test for normality (Shapiro & Wilk, 1965) and a Levene’s test for homogeneity 

(Levene, 1960) in R-packages dplyr and car respectively (Wickham et al., 2020; Fox and Weisberg, 

2019). If one or both tests rejected the null hypothesis of a normal distributed data and 

homogeneous residuals (p<0.05), the data was not directly suitable for a one-way ANOVA. After 

a logarithmic transformation of the data (i.e. of the response variable carbon stock), the 

assumptions were checked again. If the null hypotheses were accepted, the one-way ANOVA was 

performed with these log-data. If the null hypotheses were rejected again, the non-parametric 

Kruskal Wallis test was used as alternative for the one-way ANOVA (Kruskal & Wallis, 1952). 

These tests could only show whether there were significant differences between groups but did not 

conclude anything about which specific groups were significantly different. To find out, a Tukey’s 

Honest Significance Test was performed (Abdi & Williams, 2010). 

The effect of food forest age on carbon stock was analysed in a slightly different way. Since an 

increase of stored carbon over time was hypothesised, this relation was set out in a scatter plot. 

The regression of carbon stock over food forest age was also checked using an ANOVA. After the 

assumptions belonging to a one-way ANOVA were checked and log transformation was 

performed when required, the difference in carbon stock over time were tested. However, a default 

linear model (which is used in an ANOVA) might not be suitable. The accumulation of 

aboveground carbon in food forests over time is expected to be sigmoid (Birch, 1999; Dewar, 

1990). Therefore, a sigmoid model was built-in in the linear model of carbon stock and food forest 

age. First, a polynomial regression model was made in RStudio using the ggplot2 packages 

(Wickham, 2016), set with three folds (which provided a sigmoid curve). Using the nls() function 

in the nlstools packages (Baty, Ritz & Bath, 2015), a sigmoid model was made: nls(Carbon ~  

a/(1+exp(-b*(Age-c))). By setting parameters a, b and c, the appropriateness of the sigmoid model 

could be maximised. Parameter a described the saturation level of the sigmoid curve, parameter c 

is the age of food forest (x-axis) at half-saturation level and parameter b is influencing the slope of 

the model. By testing a correlation between the predicted and observed values, this appropriateness 

was checked (corr.test-function in R). The higher the significant correlation coefficient, the better 

the sigmoid model was following the relation between aboveground carbon stock and age of food 

forests.  
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3.5.2. Interaction between age, former land use and soil texture 

After testing the relation between these variables and carbon stock of food forests individually, a 

model with interaction between these variables was made. For example, the increase of carbon 

stock over food forest age might be different for a food forest on clay than a food forest on a sandy 

soil. These interactions were tested using a generalised linear model. First, the assumptions of the 

default glm were tested (normality and homoscedasticity of the residuals). To do so, diagnostic plots 

and a density curve were made. In case of rejected assumptions, another distribution has been 

implemented in the glm. Again, the diagnostic plots were used to determine which distribution best 

fitted the data (see Appendix 96). Food forests with former land use category forest were excluded 

from the generalised linear model testing the interaction between age and soil texture, since FLU 

forest was expected to significantly affect this relation. Analyses of food forests without initial 

aboveground carbon stock only gave better insight in the effect of soil texture on the accumulation 

of carbon in food forests. Using the summary-function in RStudio (car package), the P-values of 

each variable were extracted from the generalised linear model to check whether slopes of the 

models were significantly different (i.e. to test whether the variables are interacting significantly).  

To determine which glm was best predictive for the response variable (aboveground carbon stock), 

the dredge-function in the MuMIn-package was used (Barton & Barton, 2015). The generalised linear 

model with the lowest logarithmic likelihood was assumed to be best predictive. However, a simple 

model was preferred over a more complex model when the predictive capacity of the models was 

comparable. To correct the likelihood for the complexity of the model, the Akaike Information 

Criterion (AICc) was used (Akaike, 1974). Models with a delta AICc less than 2 were selected as 

best predictive. With this output, one could analyse which variables and interaction were most 

influencing the carbon stock of food forests. The numeric variable Age was averaged for the 

selected models (MuMIn-package), which could not be done for categorical variables. Since the 

difference in slope between different soil texture classes and former land use categories were 

interesting anyway, these glm’s were used regardless of the AICc.  

3.5.3. Relation between AGC stock and soil conditions 

As mentioned before, the NMVB performed detailed soil analyses during the winter of 2019-2020. 

18 out of the 21 food forests included in this research were analysed during that study. Therefore, 

it was interesting to connect the results of this research (i.e. the carbon stock of the food forests), 

with the most important results of that study. Out of the many variables tested, the following five 

were classified as most important explanatory variables of variance between food forests: amount 

of soil organic matter (SOM), acidity (pH), cation exchange capacity (CEC), total amount of 

available nitrogen (Ntot) and moisture content. Since the food forests were not divided into zones 

based before the soil samples were taken and analysed, the carbon stock will be analysed per food 

forest as well. For zoned food forests, the AGC stock was determined by averaging the carbon 

stocks of the zones. Food forests that were not analysed in the soil study were excluded from this 

analysis as well, making the total number of analysed carbon stocks set at 18. 

To connect both studies, two analyses were performed. First, a principal component analysis (PCA) 

was performed, using the FactoMineR package (Le et al., 2018). In this PCA, the correlation between 

all five soil variables and amount of aboveground carbon was visually analysed. As extra variable, 

the age of the food forest (in number of growing seasons since the first planting event) was added 

to this PCA. Former land use and soil texture could not be implemented in this PCA since these 

are categorical variables. The percentage of soil particles that were clay and sand were added to the 

PCA, to visualise the gradient of soil structure. Note that silt characteristics lay in between clay and 

sand and therefore they were not added to the PCA. The correlation between carbon stock and all 
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those variables was tested using a correlation test. The assumptions for using the default Pearson 

correlation were tested by testing normal distribution of both variables and linearity between them. 

If the assumptions were not met, a rank-based Spearman correlation was used instead. The 

outcome of these correlation tests was visualised in a correlation matrix using the corrplot-function 

in the eponymous package (Wei & Simko, 2017). All non-significant correlations (p>0.05) were 

excluded from the correlation matrix.  

3.5.4. Variation in carbon stock between food forests zones 

As described before, some of the food forests were divided into zones based on their conditions. 

The conditions of these zones are assumed to be relatively similar, except for the one or two 

variables that distinguish these zones. Therefore, it was interesting to analyse the difference 

between those two zones. There were five reasons for the implementation of zones in the food 

forests selected by the NVMB: differences in management type, age, soil texture, height, and 

vegetation structure, as shown in Appendix 1. These differences were analysed using paired t-tests. 

In this way, the difference between two measuring points (i.e. zones) of the same food forests were 

analysed. Again, the assumptions of t-tests were checked (as described before), and when needed 

logarithmic transformation and/or non-parametrical alternative were used. These analyses gave 

insight in the effect of one specific variable on carbon stock, excluding many other variables, 

though the sampling size and therefore the reliability and power of the results was very limited.  

3.5.5. Microclimate analyses 

The measurements on microclimate included light availability (canopy closure), humidity and 

temperature. For the latter two, the analysis consisted of two parts. First, the difference between 

the temperature and humidity inside and outside the food forest was tested. Measuring points were 

the criteria on measuring the outside microclimate had not been met were excluded from this 

analysis. Since the data are measured in pairs (the outside temperature of food forest X had nothing 

to do with the inside temperature of food forest Y), a paired t-test was used. If the assumptions were 

not met, a Wilcoxon Signed Rank test was used as non-parametric alternative Wilcoxon, 1945). 

After the difference was examined, the relation between all three microclimate variables and carbon 

stock was tested. Therefore, the relative difference between the inside and the outside measurement 

was calculated for all zones (in percentages of the outside temperature). A linear model was 

composed to determine whether the regression of these variables over an increasing carbon stock 

was significant.  

In addition to these analyses, a PCA with all three microclimate variables was made, using the 

FactoMineR-package (Lê, Josse & Husson, 2008). In contrast to the PCA with soil variables, this 

PCA was performed with all zones individually. Next to this, a correlation matrix has been made 

in the same way as the correlation matrix with soil variables. 

3.5.6. Analysis of aboveground carbon stock measurements  

At last, the relations between aboveground carbon stock and basal area, maximum height and 

canopy closure was analysed. The first two (basal area and maximum height) were both included 

in the allometric equations that were used to determine AGC stock. But the relation between AGC 

stock and both variables individually will be examined as well. In this way, one could investigate 

whether one of these variables is appropriate to estimate aboveground carbon stock of food forests. 

Canopy closure was not included in the allometric equations but is expected to be related to carbon 

stock. Therefore, the appropriateness of canopy closure as explanatory variable will be determined 

as well. A one-way ANOVA will be used to determine whether there is a regression and the strength 

of this regression for all three variables individually. The dredge-function (Barton & Barton, 2015) 
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will be used in RStudio to determine which generalised linear model (containing one, two or all 

three variables) best declares variation in AGC stock.  

Next to this, the relative amount of carbon stored in the shrubs was examined. Therefore, the 

amount of carbon stored in the shrubs has been set out to the amount of carbon stored in the 

trees. Moreover, the relative amount of carbon stored in shrubs (as percentage of total AGC stock) 

will be plotted against the total AGC stock. Linear models will be used to determine significance 

and strength of both regressions. These analyses could answer the question whether the amount 

of carbon stored in shrubs changes over time, or whether this is a fixed percentage, in order to 

improve the accuracy and/or accessibility of the methods of the NMPF next year.  
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(Equation 8) 

4. Results 
In this section, the most important results of this study are displayed and described. The results of 

assumption tests and supplementary results are depicted in the appendix. 

4.1. Aboveground carbon stock over food forest age 
To get insight in the influences on the four explanatory variables measured in this research, the 

relation between aboveground carbon stock and these variables were analysed. First, bivariate 

statistics were applied to these explanatory variable each seperately. After that, any potential 

interaction between those variables were analysed (multivariate analyses), for example to test 

whether there was a difference in carbon accumulation over time between soil texture classes. 

 

Figure 6: Food forest aboveground cabon stock versus food forest age. Aboveground carbon stock is expressed in Mg CO2 

ha-1, age is expressed in years. a) Aboveground carbon stock versus food forest age for all food forests. Filled dots representate 

sampling plots, coloured by their former land use category. n = 130. b) Sigmoid model curve, including food forests with FLU 

arable land and grassland. Open dots respresent all sampling plots, n = 95; filled dots represente means per zone, n = 29. Sigmoid 

model is significantly correlated with observed mean values (coëfficient = 0.99, p < 2.2e-16). Parameters of the sigmoid model 

determined at a = 40, b = 1, c = 5. Exported from RStudio. 

Carbon stock was not increasing over time, based on all food forests (see Figure 6). However, since 

some of the food forests already had a notable aboveground carbon stocks in trees (i.e. food forests 

with former land use forest), these data did not provide a clear picture of carbon accumulation. The 

effect of food forest age on carbon stock therefore was determined for food forests without any 

initial carbon stock in trees only (i.e. food forests with former land use categories grassland and arable 

land; see Figure A6). The relation between aboveground carbon stock and food forest age, seemed 

to be a sigmoid curve. The best fitting sigmoid curve, obtained using the nls-function in R (see 

Methods) was: 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑀𝑜𝑑𝑒𝑙 = 𝑛𝑙𝑠(𝐴𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝐶𝑎𝑟𝑏𝑜𝑛 𝑆𝑡𝑜𝑐𝑘 ~ 
40

𝑒−(𝐴𝑔𝑒−5)
 

 

In this model parameters a, b and c were determined at 40, 1 and 5 respectively. A was determined 

at 40, since aboveground carbon stock was saturating at 40 Mg ha-1; b and c were chosen since 

these values maximised the fitting of the sigmoid model. The coefficient of correlation between 

predicted and observed values was 0.99, and the correlation was significant (p < 2.2e-16). The 

relation between aboveground carbon stock and food forest age is therefore proven sigmoid. When 

a sigmoid model was made based on the individual sampling plots, the correlation was still 
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significant, albeit with a smaller correlation coefficient (0.84; p < 2.2e-16). See Figure A6 for 

additional graphics, displaying the sigmoid curve. 

 

 

Figure 7: Food forest aboveground carbon stock versus categorical variables soil texture, former land use and structural 

composition. Scatter points representate sampling plots. Aboveground carbon stock is expressed in Mg CO2 ha-1, age is expressed 

in years. a) Boxplot of the aboveground carbon stock per former land use category. n = 130. Carbon stock in FLU forest was 62.8 

and 64.8 Mg ha-1 higher than arable land and grassland (p < 1e-05). b) Regression of aboveground carbon stock over age for three 

categories of former land use for all food forests. n = 95. c) Boxplot of the aboveground carbon stock per soil texture class. n = 

130.  Carbon stock on sandy soils was 34.01 Mg ha-1 higher than on clay soils (p = 0.01). d) Regression of abovegroud carbon stock 

over age for three soil texture classes for all food forests with FLU grassland and arable land. n = 95. e) Boxplot of the aboveground 

carbon stock per structural composition. n = 130. Dispersed food forests had a higher aboveground carbon stock than food forests 

with alleys (difference = 2.2 Mg ha-1; p = 0.03). f) Lineplot of food forests with both structural compositions. Strata means are 

shown. n = 12. Paired t-test showed significant higher carbon stock in dispersed food forests (p = 0.02). Exported from RStudio. 

4.2. Aboveground carbon stock per former land use, soil texture and structural 

composition 
The other three explanatory variables included in this research were all categorical. Therefore, the 

analysis of the influence of these variables, were graphically presented using boxplots of the mean 

carbon stock per category (see Figure 7). For all three analyses, the assumptions of the tests were 

not met and non-parametric statistical tests (Kruskal-Wallis significance test and Mann-Whitney U 

test) were used (see Table A4 for the outcomes of the assumption tests). Carbon stock was 

significantly higher in food forests with former land use forest, than food forests with FLU-

a 
a 

b 

a 

b 
ab 

a 

b 
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categories arable land and grassland, with a difference of 64.8 Mg ha-1 and 62.8 Mg ha-1 respectively 

(p < 1e-05). No difference was found between FLU-category arable land and FLU-category grassland 

(p = 0.975). Aboveground carbon stock of food forests was also significantly different between 

soil texture classes (p < 0.001). Carbon stock on sandy soils was estimated at 34.01 Mg ha-1 higher 

than clay soils (p = 0.01), but no difference was found between sand and loam or clay and loam (p 

= 0.31 and p = 0.27 respectively). A significant difference was also found between the two ways 

of structuring the food forest. Dispersed composed food forests had a higher carbon stock than 

food forests with alleys, both in an analysis of all food forests (p = 0.03) and in an analysis of paired 

measurements (i.e. food forests that contained both structural compositions; p = 0.02).  

The first multivariate analyses have been performed on the interaction between food forest age 

and soil texture, and the interaction between food forest age and former land use (see Figure 7b,d). 

A generalised linear model with Gamma-distribution has been used in both examinations, since this 

maximised the likelihood of the glm (note that the assumptions of the default glm (Gaussian 

distribution) were not met, see Figure A2-A5). Food forests with FLU grassland showed a significant 

smaller slope than food forests with FLU arable land (0.65 ± 0.07 and 0.44 ± 0.08 respectively; p = 

0.01). The slope of carbon stock over age for food forests with FLU forest was also significantly 

smaller than the slope of former arable lands (p < 0.001). The direction of this slope had a negative 

estimate, indicating a decreasing carbon stock over time in these food forests (-0.10 ± 0.17) The 

effect of soil texture on this accumulation was examined in the same way. Food forests on clay had 

a significant higher slope than food forests on sand, with estimated slopes of 0.74 ± 0.19 and 0.33 

± 0.19 respectively (p = 0.03). Carbon stock accumulation was not different from both sand and 

clay soils in this research (both p > 0.05), although the slope was expected to be higher than the 

slope on sand soils (slope of 0.67 ± 0.21). 

Table 3: The output of the dredge analyses for selecting the best explanatory generalised linear models. Degrees of 

freedom (df) indicates model complexity; less degrees of freedom indicates a simpler model. Log likelihood (LogLik) indicates the 

explanatory capacity of the model; a lower LogLik indicates a better explaining model. Akaike Information Criterion (AICc) ranks 

models based on both explanatory capacity and complexity; the model with the lowest AICc is the best model. Delta AIC shows 

the difference in AICc between a model and the best scoring model; all models with a delta < 2 were selected. 

Model df LogLik AICc Delta 
AIC 

Adj. 
R2 

p 

glm(Carbon ~ FLU + Comp + FLU*Comp) 7 -653.99 1322.94 0.00 0.35 1.49e-
11 

glm(Carbon ~ FLU + Comp + Age + 
FLU*Comp) 

8 -653.37 1323.99 1.05 0.35 3.49e-
11 

glm(Carbon ~ FLU + Comp + Age + 
FLU*Comp + Age*Comp) 

9 -652.67 1324.91 1.97 0.35 6.94e-
11 

Although these models described differences in carbon stock accumulation between soil texture 

and FLU, many more glm’s describing variety in carbon stock could be made. With the dredge-

function in R, all possible glm’s have been made, including all four explanatory variables age, soil 

texture class, FLU class and structural composition and interactions between these variables. Three 

models had a delta AIC of less than 2, and therefore assumed to have the strongest explanatory 

power. As shown in Table 3, all these models contained variables FLU, structural composition, and 

an interaction between these two. The third model, additionally including variable age and an 

interaction between age and structural composition, had the best predictive capacity (i.e. the lowest 

absolute log likelihood) of these three options. However, this model is more complex (i.e. more 
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degrees of freedom), which moderated the AIC. The explanatory variable soil texture was not 

included in one of these best predictive glm’s.  

4.3. Food forest microclimate 
As described before, food forests were expected to have an influence on the microclimate of their 

environment. Both temperature and humidity were measured inside and outside the food forest, 

and the means of the measurements are displayed in Figure 8. For both analyses, all assumptions 

were met (see Table A4) and a t-test for two paired samples was used (since the outside and inside 

measurements belong to the same food forest). The inside air temperature was significantly lower 

than the outside temperature, with a mean distance of 10.14 ± 2,67 °C (p < 0.001). The humidity 

of the air was higher inside the forest than outside of it, with a mean difference of 12.03 ± 4.68 % 

saturation (p < 0.001). De development of these differences as carbon stock increases is also shown 

in Figure 8. The relative differences of both temperature and humidity were not significantly 

changing over carbon stock, based on a regression analyses (p = 0.71 and p = 0.58 respectively). 

 

Figure 8: The relation between food forest vegetation and temperature and humidity. Scatter points representate zones, n = 

31. No data were obtained in foodforests B, C, F, M and P. Aboveground carbon stock is expressed in Mg CO2 ha-1, humidity in 

percentage saturation, temperature in degrees Celsius and relative differences in percentages between inside and outside 

measurements. T-test for two paired samples were used to determine differences between inside and outside measurements, one-

way ANOVA was used to determine regression of temperature over aboveground carbon stock, the non-parametric alternative 

Kruskal-Wallis significance test was used for humidity regression. a) Boxplot of the mean temperature inside and outside the food 

forest. Mean outside temperature was 10.14 ± 2,67 °C higher than mean inside temperature (p < 0.001). b) Percentage difference 

between inside and outside temperatures for all zones versus the carbon stock of this zone. No significant regression was found (p 

= 0.71). c) Boxplot of the mean humidity inside and outside the food forest. Mean inside humidity was 12.03 ± 4.68 % higher than 

mean outside humidity (p < 0.001). d) Percentage difference between inside and outside temperatures for all zones versus the 

carbon stock of this zone. No significant regression was found (p = 0.58). Exported from RStudio. 

The relation between carbon stock and microclimate of a food forest is also analysed using 

Spearman correlations (see Figure 9). Similar to the outcome of the regression analysis, no 

a 

a 

b 

b 
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significant correlation was found between aboveground carbon stock and temperature of humidity 

(p > 0.05 for both correlations). In a correlation matrix without soil variables, where number of 

measurements increased from 12 to 31 (since these data were available per zone), these correlations 

were still not significant (p > 0.05, see Figure A7). Although it was not significant, the correlation 

coefficient of humidity versus carbon was higher than the correlation coefficient of temperature 

versus carbon (|0.47| to |0.03|). These findings corresponded with the output of the principal 

component analysis, where humidity was on the same axis with carbon stock (i.e. in opposite 

direction), while temperature and carbon stock were not on the same axis (i.e. more or less 

perpendicular to each other). 

4.4. Aboveground carbon stock versus soil conditions 
In this paragraph, the connection between aboveground carbon stock and soil conditions has been 

made. First, a principal component analysis (PCA) of the data has been performed (Figure 9a). Next 

to the soil variables (total amount of nitrogen, cation exchange capacity, soil organic matter, acidity, 

moisture) and aboveground carbon stock, all other numeric variables are added to the PCA 

(maximum height of the tree layer, age, difference in temperature and difference in humidity). All 

variables were implemented at food forest level since the soil data was not available per zone or 

plot. All variety within a food forest was not analysed in this way. According to the PCA, one could 

argue that all five soil indicators are highly correlated with each other, and with the amount of 

lutum (clay) particles in the soil. The sand arrow was located in the opposite direction of these six 

arrows, indicating a highly negative correlation between the amount of sand particles and these six 

variables. Soil organic matter (SOM) seemed to be the soil variable most correlated with carbon 

stock since the SOM-arrow is the closest to the Carbon-arrow. No significant regression between 

AGC stock and SOM content was found (p = 0.20, see Figure A9). One could argue that there is 

an abiotic axis from sand to moisture, and a biotic axis from carbon to humidity. Clusters of food 

forests became visible, having food forests on a sandy, nutrient poor soil (E, H, I, J, L); food forests 

on a clay, nutrient rich soil (D, G, O Q); and food forests with a relatively large carbon stock (A, 

P; although they are quite different in soil conditions). See Appendix 1 for information about these 

codes and the corresponding food forests.  

These assumed correlations can be checked using a correlogram. Since the assumptions for testing 

correlations were not always met, a rank-based Spearman correlation function was used. A 

significant correlation between the five soil variables was confirmed, just as the significant negative 

correlation with the amount of sand particles (all p < 0.05; see Table A5 for all specific p-values). 

Carbon stock was not significantly correlated with one of the soil variables (all p > 0.05). From all 

five soil variables, carbon stock was most correlated with SOM (adj. R2 = 0.52) and less correlated 

with CEC (adj. R2 = 0.09), although these correlations were not significant as mentioned. In Figure 

A8, a heatmap is visualised, where clusters of most correlating variables are displayed. The two 

distinguished clusters are: ‘pH, Lutum, SOM, CEC, Ntot and Moisture’ and ‘Carbon, Maximum 

Height, Canopy and Age’. 
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Figure 9: Relation between response variable carbon stock and explanatory variables age, relative difference in 

temperature (Temp), relative difference in humidity (Hum), percantage canopy closure (Canopy), soil organic matter 

(SOM), cation exchange capacity of the soil (CEC), moisture availabilty of the soil (Moisture), total amount of available 

nitrogen (Ntot), acidity (pH), percentage of clay paticles (Lutum) and percentage of sand particles (Sand). Input 

information of all three analyses was the mean per food forest, n = 12. a) Principal component analysis (PCA), codes of the food 

forests as scatter points. b) Correlogram showing adjusted R2 values of all possible correlations, based on the Spearman, rank based 

correlation method. Positive correlations in blue, negative correlations in red. c) Correlogram showing adjusted R2 values of all 

significant correlations (p < 0.05) Exported from RStudio. 

4.5. Elements of aboveground carbon stock calculations 
In order to determine whether it is possible to estimate aboveground carbon stock based on easier, 

less complex measurements, the regression between AGC stock and three variables are analysed: 

closure of the canopy, maximum height and basal area. Next to this, the importance of measuring 

shrub carbon stock is examined. As shown in Figure 10, a significant linear regression was found 

between canopy closure and AGC stock (p < 0.05). However, this regression model only explained 

33% of the variation in canopy closure (adjusted R2 = 0.33) and the relation seemed exponential 

instead of linear (see Figure 10a). The turning point is located at an AGC stock of ~ 15 Mg ha-1 (see 

Figure A13). After a logarithmic transformation of the carbon stock (see Figure 10b), 

b               c 

a                      
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Figure 10: Canopy closure, maximum height of tree layer and basal area versus aboveground carbon stock. Scatter points 

representate sampling plots. Canopy closure data was obtained using Canopy Capture application (Patel, 2018); no canopy closure 

data was obtained in foodforest C (MijnStadstuin, Amsterdam). Trees and shrubs were be considered to be one layer. Aboveground 

carbon stock is expressed in Mg CO2 ha-1, canopy closure in %, maximum height in centimeters. One way ANOVA’s were used to 

test regressions. a) Aboveground carbon stock versus closure of the canopy; significant regression was found with an adjusted R2 

of 0.33 (p < 0.001). n = 121. b) Logarithmic transformed aboveground carbon stock versus closure of the canopy; significant 

regression was found with an adjusted R2 of 0.76 (p < 0.001). n = 121. c) Aboveground carbon stock versus the maximum height 

of the tree layer; significant regression was found with an adjusted R2 of 0.56 (p < 0.001). n = 130. d) Logarithmic transformed 

aboveground carbon stock versus the maximum height of the tree layer; significant regression was found with an adjusted R2 of 

0.87 (p < 0.001). n = 130. e) Aboveground carbon stock versus closure of the canopy; significant regression was found with an 

adjusted R2 of 0.82 (p < 0.001). n = 130. f) Logarithmic transforemd aboveground carbon stock versus closure of the canopy; 

significant regression was found with an adjusted R2 of 0.69 (p < 0.001). n = 130. Exported from RStudio. 

the relation between both variables was linear. In this model, there is a significant regression 

between canopy closure and carbon stock, with an adjusted R2 of 0.76. This log-transformed model 

better described the relation than the non-transformed model, confirming the logistic regression 

between carbon stock and canopy closure. As shown in Figure 9, canopy closure was also 

significantly correlating with AGC stock, with a correlation coefficient of 0.86 (p < 0.05). 
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The relation between carbon stock and the maximum height of the tree layer is comparable. Again, 

there is a relation between the two variables: carbon stock increases if maximum tree height 

increases. A significant linear regression was found, with an adjusted R2 of 0.56 (p < 0.001). 

After logarithmic transformation of the carbon stock, a more linear looking relation was found (see 

Figure 10d). The linear regression of this model declared over 87% of the variation between 

maximum height of the tree layer and carbon stock, confirming that this model better explained 

the relation than the non-transformed model. The relation between maximum height of the tree 

layer and carbon stock was therefore significant and exponential. The correlation matrix has also 

shown a significant correlation between the maximum height of tree layer and AGC stock, with a 

Spearman’s correlation coefficient of 0.96 (p < 0.05); making maximum height the variable most 

strictly correlating with aboveground carbon stock (i.e. variable with the highest correlation 

coefficient, see Figure 9).  

Next to tree height, the allometric equations required stem diameter measurements. Stem diameter 

is converted to total basal area per sampling plot. In contradiction to both canopy closure and 

maximum height of the trees, basal area showed a linear regression with AGC stock (no logarithmic 

transformation was needed). This regression declared up to 82% of variation in carbon stock (p < 

0.05; see Figure 10e). As shown in Figure 10f, a logarithmic transformation did not improve linearity 

nor the explanatory capacity of the regression (Adj. R2 = 0.69). Basal area was declaring less 

variation in AGC stock than maximum height of the tree layer did (82% and 87% respectively), 

although a logarithmic transformation was required for the latter.  

 

Figure 11: Amount of carbon stored in shrubs. Scatter points representate sampling plots (n = 130). Aboveground carbon stock 

is expressed in Mg CO2 ha-1. Spearmon, rank-based correlation methods were used to test correlations, one way ANOVA’s were 

used to test regressions. a) The amount of carbon stored in trees versus the amount of carbon stored in shrubs, both logaritmic 

transformed; significant correlation of 0.55 was found (p < 0.001). b) Relative amount of carbon stored in shrubs (as percentage of 

total aboveground carbon stock) versus aboveground carbon stock aboveground carbon stock; significant regression was found 

with an adjusted R2 = 0.09 (p < 0.04). Exported from RStudio. 

To determine whether it is accurate to determine aboveground carbon stock by measuring only 

one variable, an analysis of the possible generalised linear models was performed. Using the dretch-

function in RStudio, the best predictive models were selected out of all models including 

explanatory variables canopy closure, maximum height of the tree layer and basal area (see Table 

A8). The glm with all three variables was determined to be the best explanatory model (lowest 

AICc) and explained 99% of variation in aboveground carbon stock. The second-best predictive 

model was the model without canopy closure as explanatory variable, indicating that out of these 

three variables, canopy closure is the least accurate one. The models including either maximum 
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height or basal area had a large delta AIC and were therefore describing AGC stock significantly 

worse than the model including both variables. A glm with maximum height as only explanatory 

variable described 55% of variation in AGC stock, while the glm with basal area as only variable 

explained 83% of AGC stock. 

In order to determine whether shrub carbon stock measurements were necessary in further 

research, the relative amount of carbon stored in shrubs was analysed. First, the carbon stock in 

shrubs has been plotted against carbon stock in trees (see Figure 11). After logarithmic 

transformations, a linear relation was found (see Figure A14 for non-transformed graphs). A 

significant correlation with a coefficient of 0.55 was found for this relation (p < 0.001). This 

indicated that carbon stock in shrubs is larger when carbon stock in trees is larger. Next to this, the 

amount of carbon stored in shrubs as percentage of total carbon stock has been analysed (see Figure 

11b). In young food forests, the shrub carbon stock is relatively high, and it seemed to decrease 

over total aboveground carbon stock. A significant negative regression was found, with a slope of 

-0.64 ± 0.29 (p < 0.04). Note that the percentage of variance in data explained by this regression is 

low (adjusted R2 = 0.09).  

Figure 12: Aboveground carbon stock of food forests compared to aboveground carbon stock of more natural food forests. 

FF = food forest; REF = reference (natural forest). Boxplots were made using carbon stocks per sampling plots. Aboveground 

carbon stock is expressed in Mg CO2 ha-1. a) Boxplots of the mean abovevround carbon stock for food forests (n = 130) and 

reference forests (n = 3). ACS was higher in reference forests, with 95% confidence interval = [110.3;263.4]; difference was 

significant (p = 0.005) based on Mann Whitney U Test b) Scatter plot of aboveground carbon stock versus age of the (food) forest. 

Red scatters representate sampling plots in food forests (n = 130), blue scatters representate sampling points in reference forests (n 

= 3). 

4.6. Food forests versus natural forests 
In principle, food forests are designed to function like a natural forest, including all ecosystem 

functions natural forests have. According to this hypothesis, carbon stocks of food forests should 

be comparable to carbon stocks of natural forests in similar circumstances. Three natural forests, 

one per soil texture class, were selected and aboveground carbon stock was measured, using one 

sampling plot each. As displayed in Figure 12 mean aboveground carbon stock in reference forests 

was significantly higher than mean AGC stock in food forests. This difference was estimated at 

216.59 (p = 0.005). Food forests with FLU forest were also significantly different from reference 

forests, although the difference was smaller (Estmiated at 135.7; p = 0.01; see Figure A11). At this 

moment, AGC stock in food forest is not at the same level as AGC stock in natural forets in the 

Netherlands. 
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Table 4: Aboveground carbon stocks found in this research compared to other food forests, agroforestry systems and 

natural forests. Values marked with * are not an average, but based on one study site. Number of measurements is only given 

for data obtained in this study. 

 

AGC stock is also compared to data obtained from other scientific studies. As shown in Table 4, 

the 21 food forests included in this study had a mean aboveground carbon stock of 21.8 Mg ha-1 

and a mean age of 3.4 years. Since the mean age was that young, it was hard to compare all these 

forest to natural forests, other temperate food forests and tropical equivalents. The oldest food 

forest, Sualmana, had an age of 22 years, which was only slightly different from the food forest in 

Devon, UK. As far as known, these are the oldest two temperate food forests in the world. The 

aboveground carbon stock of Sualmana was comparable to that of the food forest in Devon, 37.2 

and 34.5 Mg ha-1 respectively (Lehmann et al., 2019). These values were notably lower than the 

mean AGC stock in tropical home gardens with a more or less similar age (61.5 Mg ha-1), assuming 

that carbon stock is built up quicker in tropic than in temperate food forests or agroforestry 

systems. A same ratio was found between mean AGC stocks in tropic and temperate natural 

forests, which were determined at 60.9 and 45 Mg ha-1 respectively at an age of 20 years (Rooduijn 

et al., unpublished). Sualmana food forest had a lower aboveground carbon stock than a temperate 

natural forest with a similar age, albeit a small difference (37.2 to 45 Mg ha-1). The reference forests 

included in this research had a mean aboveground carbon stock of 197.5 Mg ha-1, which is 

significantly higher than a natural forest in the Netherlands with an age of 50 years (determined at 

Category Location Number of 
measurements 

Mean 
age 
(years) 

Mean AGC 
stock 
(Mg CO2 
ha-1) 

Source 

Food forests 
measured in 
this research 

Food forests 130 3.43 21.80 - 

Food forests with 
FLU forest 

35 2.84 66.16 - 

Food forests with 
FLU arable land or 
grassland 

95 3.58 2.31 - 

Food forest 
Sualmana, the 
Netherlands 

3 22* 37.16* - 

Other food 
forests and 
agroforestry 
systems 

Agroforestry 
Research Trust 
food forest in 
Devon, United 
Kingdom  

- 23* 34.53* Schafer, Lysák 
& Henriksen, 
2019 

Tropical home 
gardens and 
agroforestry 

- 21 61.5 Rooduijn et al. 
(unpublished 
data) 

Natural forests Natural forest in 
tropics 
(secondary) 

- 20 60.9 Rooduijn et al. 
(unpublished 
data) 

Natural forest in 
temperate 
climates 

- 20 45 Rooduijn et al. 
(unpublished 
data) 

Natural forest in 
the Netherlands 

- 50 59 Nabuurs & 
Mohren, 1993 

Natural forest in 
the Netherlands 

 max. 120  up to 200 Sikkema & 
Nabuurs, 1994 

Reference forests  3 unknown 197.5 - 
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59 Mg ha-1 by Nabuurs & Mohren (1993)). However, aboveground carbon stock of natural forests 

can accumulate up to 200 Mg ha-1 after 120 years (Sikkema & Nabuurs, 1994). Although the age of 

the reference forests was unknown, it was unlikely that they were more than years old. All 

mentioned comparisons were not tested statistically, since every study had different measurements 

and methodologies. It could therefore only give some insight, rather than provide firm conclusions. 
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5. Discussion 
The most important results were presented and described in the former paragraph. Food forests 

planted in former forests had a higher AGC stock than the other food forests, and food forests on 

sandy soils had a higher AGC stock than food forests on clay soils. Note that the mean age of food 

forests on sand was higher than food forests on clay as well. If FLU-category forest was left out, a 

sigmoid relation between aboveground carbon stock and the age of food forests has been found. 

The structural composition of food forests did also describe variation, as a significant higher AGC 

stock was found in dispersed food forest compared to ones with alleys. The accumulation rate of 

carbon was higher in food forests on former arable lands than those on former grasslands, and 

higher in food forests on clay than those on sand. Focussing on the microclimate of food forests, 

significant lower temperatures and higher humidity were found inside food forests compared to 

the outside conditions. These differences were not increasing when food forests have a bigger 

carbon stock. We have also seen that food forests were significantly correlating with canopy 

closure, the maximum height of their trees and basal area, from which maximum height was 

explaining most variation in AGC stock. From all included soil variables, the amount of soil organic 

matter was most correlated to AGC stock, although this correlation was not significant. At last, 

food forests included in this research did not yet reach the AGC stock values found in natural 

forests, but the oldest one (Sualmana) had a comparable AGC stock as a food forest examined in 

another study with similar age. The reference forests measured in this study have shown relatively 

high carbon stocks compared to mean AGC stocks of natural forests in literature.  

All mentioned results will be discussed in this paragraph, complemented with the most important 

limitations of this research and recommendations for further research. 

5.1. Aboveground carbon stock over food forest age 
Food forest aboveground carbon stock was increasing as food forests were getting older. As 

hypothesised, this relation could be predicted by a sigmoid model, but one could discuss whether 

a saturation of AGC stock at a 40 Mg ha-1 is likely (Dewar, 1990; Birch 1999). This saturation level 

was reached at an age of less than 25 years. At this age, forests are still growing, and carbon stock 

is still developing (Sikkema & Nabuurs, 1994; Lee, McCarl & Gillig, 2005; Kauppi et al., 2010. The 

biggest constraint of the sigmoid model is the lack of relatively old food forests and therefore the 

great dependence on one food forest (food forest Sualmana, located in Swalmen) concerning the 

curve of the regression. Food forest Sualmana is likely to have a smaller carbon stock than expected 

at an age of 22 years old, because of the nutrient poorness of its soil and the impoverishing 

management that has been executed. Although other studies have confirmed the negative effect of 

soil nutrient poorness on carbon storage in natural forests (Basset, 1994; Sullivan et al., 2015), these 

studies have not been performed in food forests yet. The only relatively old temperate food forest 

(in Devon, UK) had a comparable AGC stock (Schafer, Lysák & Henriksen, 2019) as Sualmana. 

This food forest has a relatively nutrient poor soil as well, which could declare its unexpectedly 

small carbon stock (Lehmann et al., 2019; Schafer, Lysák & Henriksen, 2019). Although mean 

carbon stock in temperate food forests of 22 years is expected to be higher than in Sualmana and 

Devon, this could not be confirmed due to the lack of other food forests with this age. In 

conclusion, the sigmoid curve could be realistic, but the great uncertainty of carbon stock in older 

temperate food forest should be borne in mind. 

The accumulation rate of AGC was different in three categories of former land use forest, arable land, 

and grassland. A negative relation between carbon stock and age was found for food forests with 

FLU forest. This could be explained by the large variety of initial conditions between these food 
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forests. For example, it is different to compare a former production forest and a former orchard. 

The former orchard will show a smaller carbon stock than the former production forest, even when 

it is several years older (Lugato et al., 2014; Cao, Valsta & Mäkelä, 2010), which could result in a 

negative curve of AGC stock over time. The development of carbon stock should be monitored 

within one food forest to prevent the results for being affected by this variety in initial conditions. 

But the negative relation between age and AGC stock could also be caused by the fact that some 

of the food forests were thinned out, in order to enhance light availability for understory and clear 

the way for planting crop species. AGC stock will decrease in the first years but is expected to 

increase thereafter when planted trees and shrubs started growing. In fact, carbon stock 

accumulation rates are expected to be even higher in FLU forest than on former arable lands and 

grasslands. In general, soils of forests have a higher nutrient richness and water storage capacity 

than soils of grasslands and arable lands (Johnson & Wedin,1997; Billings, 2006; Evrendilek, Celik 

& Kilic, 2004). This could lead to a higher plant growth rate and therefore higher carbon 

accumulation rates (Bassett, 1964; Sullivan et al., 2015). Moreover, the environmental circumstances 

of a forest provide more sun and wind protection than the circumstances on an arable land or 

grassland. On the other side, competition for water and nutrients will be heavier in forests than in 

arable lands and grasslands (Nambiar & Sands, 1993; Coomes & Grubb, 2000). Whether carbon 

accumulation rate is higher in former forests than in former arable lands and grasslands could 

therefore not be determined yet. At least a negative slope of AGC accumulation in former forests 

is implausible in the longer term.  

5.2. Effect of categorical variables FLU, soil texture and structural composition 
As hypothesised, AGC stock was significantly different between FLU-category forest and the other 

two FLU categories. Because food forests on former forests had a large initial aboveground carbon 

stock, this result is not astonishing. A larger carbon stock on former grasslands compared to former 

arable lands was not found, although this was hypothesised due to its microbial community and 

the higher nutrient and water availability this provides (Schulte et al., 2005; Girvan et al., 2004; 

McLauchlan, Hobbie & Post, 2006). The absence of this difference could not be explained by the 

mean age of both categories since the mean age of former grasslands was not higher than that of 

former arable lands. It might be possible that the differences in initial soil conditions between 

former grasslands and arable lands do not influence AGC accumulation at all. This corresponds to 

the absence of significant differences in soil conditions between both FLU categories in the study 

of De Groot (2020). Note that the effect of former land use could remain visible in the soil for 

decades (Bissett, 2011; Callaham, 2006). In this study, food forests are allocated to a FLU category 

based on their latest land use. But it is way more complex, and it might matter whether a food 

forest was an arable land for 5, 10, or 50 years (Bisett, 2011; Callaham, 2006). Added to this, not 

every arable land is the same. In short, a more detailed examination of former land uses should 

answer the question whether there is no difference in AGC accumulation between former arable 

lands and grasslands, or whether this absence is caused by the simplified analysis. An expansion of 

the dataset could help to answer this question, since the long-term effect of FLU types could better 

be analysed.  

As expected, a significant difference in aboveground carbon stock was also found between soil 

texture classes sand and clay. Due to the higher availability of nutrients and moisture in clay soils, 

a higher AGC stock was expected in clay soils than in sandy soils (Bassett 1964; Brown, 2007; 

Sullivan et al., 2015). However, the observed difference was contrary to this and a higher AGC 

stock on sand than on clay was found. Although carbon stock was significant higher at sandy soils, 

this difference was not automatically caused by soil conditions. This contrast could be caused by 
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the mean age of both categories. Sampling plots on sandy soil had a mean age of 3.3 years, while 

the mean sampling plot on clay soils was 2.8 years old. Although this seems like a slight difference, 

it could be a reason for enhanced AGC stock on sand soils. To prevent the analysis for being 

influenced by age, a comparison per age category (in number of growing season) could be made. 

However, the dataset was too small to do so. Furthermore, age is just one of many variables that 

could influence the comparison between soil texture classes. Former land use could not have had 

an influence, because food forests with FLU forest were excluded from this comparison and no 

significant difference was found between former arable lands and grasslands. But, for example, 

environmental conditions could have influenced the effect of soil texture on AGC stock. For 

example, the included food forests had a variation in planting design, management and abiotic 

circumstances. Some of the food forests had extreme high moisture values during winters (e.g. Mijn 

Stadstuin) caused by the location of the food forest. Others were suffering with common high 

winds (e.g. Kreilerwoud), while others were well sheltered. A relatively low growth rate (and AGC 

accumulation) in Mijn Stadstuin and Kreilerwoud might not (or only partially) be caused by their 

soil texture but caused by their unfavourable environmental conditions. Therefore, it is hard to 

prove the effect of FLU on carbon stock development. Since long periods of drought occurred 

more frequently in the Netherlands over the last couple of years (Philip et al., 2020), and food 

forests on sandy soils seemed to suffer more with these drought than food forests on clay soils 

(pers. comm.), the hypothesis composed in the beginning of this study still remains.  

The structural composition of food forests was also declaring variety in aboveground carbon stock. 

As hypothesised, dispersed food forests had a larger AGC stock than food forests with alleys, due 

to positive interspecific interactions (Morin et al., 2011; Palandrani, Battipaglia & Alberti, 2020). 

These differences could not be declared by a difference in soil texture or former land use since 

these variables were constant in the analysed plots (this was one of the major benefits of applying 

zones). Age could have influenced the difference between both compositions, since the dispersed 

zones were older than the zones with alleys in two food forests (Ketelbroek and Benthuizen). 

However, even when these were both excluded, a significant difference between dispersed and alleys 

was found. The main disadvantage of this analysis is the small number of food forests that were 

included (five) and that they were all relatively young (at most 3 years old). The impact of planting 

is therefore expected to be relatively large. Dispersed food forests might be planted more 

intensively than alleys since alleys were designed to maximise yield and harvest in future. Whether 

the difference between these two structural compositions still occur in more mature food forests 

is questionable. The hypothesis of a positive effect of interspecific interactions in dispersed food 

forests could not be confirmed based on the data obtained in this study, since these effects are not 

expected to be visible within one or two years (Jose, Gillespie & Pallardy, 2004; Ong et al., 1991; 

Asthon, 1999). Planting statistics could be analysed for these specific food forests, in order to 

exclude the effect of planting on this difference. Although dispersed food forests could provide 

significant yields as well, large-scale harvest is more effective in a food forest with an alley-design 

(Chaturvedi, 1992; Ferguson & Lovell, 2014). If food forest with alleys are providing as much 

carbon stock as dispersed food forests, this might enlarge the interest in the creation of new food 

forests and the capacity of food forests to fungate as affordable carbon storage projects (Riolo, 

2019; Opiniepanel, 2019). Even if carbon storage in an alley-design does not equal the storage in a 

dispersed food forest, one could consider the trade-off between harvest-friendliness and carbon 

storage. Therefore, it is necessary to determine whether there is a difference in carbon stock 

between both compositions and what this difference exactly is. 
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5.3. Influence of soil variables on AGC stock 
Out of all soil variables, the amount of soil organic matter (SOM) was most strictly correlating with 

aboveground carbon stock. However, the regression between SOM and AGC stock was not 

significant, neither was the correlation between both. The hypothesis of an increase in moisture 

and nutrient availability in SOM rich soils (Billings, 2006; Craswell & Lefroy, 2001) was confirmed 

concerning food forests included in this study (De Groot, 2020). This could be declared by two 

things. First, food forests with a large AGC stock developed a large amount of SOM in their soils. 

Second, food forests with a large amount of SOM were able to accumulate carbon more quickly 

than SOM poor food forests, due to positive influence of SOM on plant growth (Craswell & 

Lefroy, 2001; Bot & Benites, 2005). In fact, both aspects are expected to be true, but the second 

aspect has not been proven in this research. Food forests with a different initial SOM content 

should be monitored over several years to determine whether carbon stock is accumulating quicker 

in presence of large amounts of SOM indeed. For example, food forests Eemvallei-Zuid and 

Schijndel-Hardekamp are suitable for this analysis. Food forest Eemvallei-Zuid is located on a soil 

with a relatively high initial SOM content of 4.1, while Schijndel-Hardekamp is located on a soil 

with a significant lower amount of SOM (2.7, in essence the second lowest of all food forests). 

Both food forests are young (1 and 2 years old respectively) and relatively large-scale, making them 

comparable and appropriate for extensive measurements. One should consider that the soils of 

both food forests do not have the same texture. Food forest Benthuizen could be used as 

alternative for Eemvallei-Zuid, to increase the difference in SOM content (from 1.4 to 7.3). 

However, Benthuizen is way smaller than Schijndel-Hardekamp and besides a former peatland with 

high water level. This larger variety on multiple variables would increase the difficulty of data 

interpretation, making the comparison between Eemvallei-Zuid en Schijndel-Hardekamp more 

favourable. In conclusion, one could analyse the differences in carbon accumulation between two 

food forests, but there are always differences concerning other variables that should be borne in 

mind. An expansion of the total dataset by the addition of more food forests should make the 

analysis of the relation between SOM and AGC stock more accurate.  

The large variation in initial SOM conditions between the food forests reinforces the choice to 

compare Dutch food forests based on their aboveground carbon stock only. As described before, 

the effects of land use on soil conditions could remain visible for decades (Bissett, 2011; Callaham, 

2006). An assessment of the total carbon stock of a food forest has therefore a high chance of 

being influenced by the former land use. For example, food forest Benthuizen is relatively young, 

but has a large soil carbon stock. In fact, one should include the additional soil organic carbon 

content, from the moment the land was converted to a food forest (at least for the former arable 

lands and grasslands). This matter requires an extensive assessment, which could not be performed 

in this study. Furthermore, soil organic carbon is much more volatile than carbon stored in biomass 

(McBride et al., 2020; Buchanan & King, 1992). Lastly, aboveground carbon stock accumulates 

quicker than a soil carbon stock. Both aspects speak in favour of the use of aboveground carbon 

stocks to compare (the relatively young) Dutch food forests in a standardised and robust way. 

5.4. Microclimate of food forests 
The results concerning microclimate of food forests were partly identical to what was hypothesised 

(Konarska et al., 2016; Van Noordwijk et al., 2014; Gosme et al., 2016). On average, food forests 

had a cooling and moisturizing effect on the air. This effect is comparable to the effect of natural 

forests (Midrexler, Zhao & Running, 2011). Hardly any food forests without an effect on 

temperature and humidity have been found. It is remarkable that air is already cooler and moisture 

in the youngest food forests. Most of the young food forests still had a relatively small carbon stock 
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and were characterised by large herbaceous vegetation. The observed difference in humidity and 

temperature in these young food forests implicates that the presence of herbaceous vegetation only 

affected the microclimate already. This is found in other studies on herbaceous vegetation as well 

(Kaufmann et al., 2003; Simonin et al., 2014). But as described in the hypotheses, forests are 

expected to have a larger effect on temperature and humidity than grassland vegetation (Teuling et 

al.,2010). In essence, the relative differences between inside and outside measurements were 

expected to increase over aboveground carbon stock. This effect has not been observed in this 

research. This could be caused by the absence of measurements in food forests with a large carbon 

stock. In food forest Voedselrijk and Sualmana (second and third highest AGC stock of all food 

forests respectively), the outside measurements were also executed in a forest. Even though it was 

outside the food forest, these measurements did not comply with the protocol of measuring away 

from wooded areas. The other food forest with a large carbon stock (De Stomp) did not show a 

relatively large difference in temperature and humidity either. But these measurements could be 

affected by the extremely cold and wet weather conditions that day, which were exceptions to 

generally warm and dry measurement days. Although the differences in temperature and humidity 

were transformed to relative values, these extreme conditions could have been influencing. In 

short, the presence or absence of a regression between microclimate conditions and AGC stock 

should be confirmed in further, more extended research. More accurate measurements in food 

forests with large aboveground carbon stocks are necessary to be included in those studies, even if 

that means that outside temperature and humidity will not be monitored just outside the food 

forest. The hypothesis of an increasing effect of food forests on microclimate conditions as 

aboveground carbon stock grows, remains intact. 

5.5. Elements of aboveground carbon stock calculations 
To relation between the three characteristics canopy closure, maximum height and basal area and 

aboveground carbon stock was analysed to determine whether these characteristics are appropriate 

to determine AGC stock in food forests. A significant regression between canopy closure and 

aboveground carbon stock was found, although this regression was not linear but logistic. At low 

AGC stock levels canopy closure was increasing strongly, but at higher AGC stock levels the 

regression flattens. Canopy closure might therefore be a good explanatory variable for young food 

forests, but the variation is too large to predict carbon stock in more mature forests. The turning 

point seemed to be located at an AGC stock of 15 Mg ha-1, after which canopy did not increase 

any further when AGC stock increased. A food forest without any initial AGC stock (i.e. food 

forests on former arable lands and grasslands) are expected to reach this carbon stock after 7-10 

years, based on the AGC stocks found in this study. For example, a canopy closure of 80% could 

be related to carbon stocks of 40 to 400 Mg ha-1 in this study. Within the first years of food forest 

development (especially on arable lands and grasslands), canopy closure might be useful as quick 

method to estimate carbon stock. But even in immature food forests, canopy closure is not very 

accurate. An AGC stock of 4.4 Mg ha-1 was found in a plot with 0% canopy closure, while another 

plot had a canopy closure of 34% and a AGC stock of 0.9 Mg ha-1. These large variations could be 

caused by the inaccuracy of measurements, but these are found in other studies as well (Valverde 

& Silvertown, 1997; Heynen & Lindsey, 2003) and should be considered when using canopy closure 

as estimator of AGC stock. When these relatively large confidence intervals are considered, canopy 

closure can be used as quick, simple estimator of AGC stock. Furthermore, it might be interesting 

to keep measuring canopy closure for other purposes, such as light availability for herbaceous 

vegetation (Parent & Messier; 1996; Warren et al., 2013). 
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In contradiction to canopy closure, the maximum height of the tree layer was describing variation 

in aboveground carbon stock surprisingly good. Compared to the regression of canopy closure, the 

regression of maximum height over AGC stock had less deviation and a higher explanatory capacity 

(based on the adjusted R2 of 0.87 and 0.66 respectively). Furthermore, the regression seemed much 

more monotonous, following an exponential curve, which was transformed into a perfect linear 

relationship after logarithmic transformation of carbon stock. Based on existing literature, this 

strong relation was not expected (Vieilledent et al., 2012; Mensah, Veldtman & Seifert, 2017). Since 

food forests are very dissimilar, concerning e.g. former land use, planting strategy, species 

composition and planting density, a large variety of AGC stock at a certain maximum tree height 

was expected (Levy et al., 2004; Calvo-Alvarado, McDowell & Waring, 2008). The total basal area 

of the plot was also significantly correlating with AGC stock, even without a logarithmic 

transformation, with an adjusted R2 of 0.84. Both maximum height of the tree layer and basal area 

seemed to be an accurate estimator of AGC stock. However, a model including both variables was 

explaining significantly more variation in AGC stock, with an adj. R2 of 0.99. This result is not 

surprising, since both tree carbon stock measurements include both variables in their allometric 

equations (Verra; UNFCCC, 2013). Furthermore, Verschuyl et al. (2018) concluded that shrub 

carbon stock could be best predicted by an allometric equation including both basal area and 

maximum height. Nevertheless, the strong and significant regressions between AGC stock and 

both variables individually are interesting, as this might insinuate that AGC stock could be 

estimated quite accurately based on one variable (food forest height or basal area) only. The 

appropriateness of both variables as explanatory variables could be examined in future. For 

example, a more extended and precise data sampling technique of maximum tree height could be 

determined. Furthermore, Multiple allometric equations with increasing complexity could be 

compared with each other (instead of only comparing glm’s). If field work methodologies could be 

made less time-consuming due to the discovery of an accurate, simple model of estimating carbon 

stock, more food forests could be included in one study and/or fieldwork could be focussed on 

more in-depth analyses. In future, one could distinguish a complex sampling technique including 

basal area, canopy closure and maximum height to determine AGC stock precisely and a simple 

sampling technique including only basal area or maximum height to estimate AGC stock roughly. 

In order to determine the usefulness of these measurements, an analysis of shrub AGC stock has 

been made. The relative amount of carbon stored in shrubs was negatively correlating with 

increasing carbon stock. However, the variation in AGC stock of shrubs predicted by this 

correlation was very low (adj. R2 = 0.09) making the correlation less meaningful. Furthermore, this 

negative relation was mainly caused by the former production forests (Voedselrijk and De Stomp). 

These two food forests had the largest AGC stock, but a relatively small shrub carbon stock. Since 

hardly any shrubs were planted in these former production forests yet, the limited amount of 

carbon stored in shrubs in these food forests is not surprisingly. Excluding the former forests from 

this analysis gave other insights. In food forest Ketelbroek, which is the second oldest food forest 

planted with FLU arable land or grassland, 8.5% of AGC was stored in shrubs (at an age of 9 years 

on average). Assessments on the proportion of carbon stored in shrubs in natural forests are 

limited, but multiple studies estimated that the AGC stocks of shrubs are a maximum of 3% (Ullah 

& Al-Amin, 2012, Janssens et al., 1999). A study in Nepal found a relative carbon stock in shrubs 

of 10%, however climatological circumstances were different from the situation in The 

Netherlands (Dangal, Das & Paudel, 2017). The relative carbon stock of 8.5% in food forest 

Ketelbroek therefore seemed to be relatively high, compared to natural forests, making the 

inclusion of shrub measurements in assessments on carbon stocks of food forests useful. It was 

not possible to determine a fixed percentage of shrub AGC stock, based on the data obtained in 
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this study. The correlation that described this fixed ratio only had a coefficient of 0.55 and older 

food forests were underrepresented. In conclusion, the hypothesis that shrubs contributed 

significantly to the AGC stock of food forests could neither be rejected nor confirmed, and it 

would be sensible to continue shrub measurements in order to determine potential fixed 

percentages in future.  

5.6. Food forests versus natural forests 
On average, AGC stock was significantly lower in food forests than in the reference forests 

included in this research. It is assumable that this difference is mainly caused by the higher mean 

age of reference forests (Nabuurs & Mohren, 1993; Daamen, 2008; Schelhaas & Clerkx, 2015). 

Therefore, these reference forests are not useful in carbon stock comparisons (although they could 

explain unexpected data points in the trends of carbon accumulation in future). It might be 

interesting to expand the study on reference forests with secondary growing forests, for example 

after forest fires and/or reforestation projects. The exact age of these forests is known, and the 

increase in carbon stock can be monitored within the first years of succession. When using 

reforestation projects as reference, one should take the purpose of maximising carbon storage (Face 

the Future, Dybala et al., 2019) into account. Production forests had the same objective since these 

were designed to produce timber. Food forests in former production forests (Voedselrijk, De 

Stomp) had indeed a higher initial carbon stock than the reference forests. Former production 

forests that have had the same objective (Voedselrijk en De Stomp) have shown a significantly 

higher AGC stock than the natural forests measured in this study. Carbon stock in these 

reforestation areas might therefore accumulate quicker than can be expected in food forests (and 

natural forests), making secondary forests most appropriate as natural forest reference. 

When comparing secondary temperate forests of 20 years old (Pregitzer & Euskirchen 2004; 

Rooduijn et al., unpublished) to the oldest food forest in this research (Sualmana, 22 years old), 

natural forests had a higher carbon stock, with a difference of 21%. We hypothesised an equal 

carbon stock in food forests and in natural forests, like found in tropical agroforestry systems (61.5 

and 60.9 Mg ha-1 on average respectively (Rooduijn et al., unpublished). As mentioned before, there 

are arguments to suspect an unrepresentatively low carbon stock in Sualmana. First, the food forest 

is located at a dry, sandy soil, with a low water availability. Second, nutrients have been removed 

from the food forest, impoverishing the nutrient availability in the soil. Both processes were 

negatively influencing tree growth and therefore aboveground carbon accumulation (Basset, 1994; 

Sullivan et al., 2015). Based on this study, we cannot reject the hypothesis of a similar carbon stock 

in food forests and natural forests, since this would completely be based on one food forest only. 

Whether other food forests transcend the carbon stock of Sualmana (37 Mg ha-1 after 22 years) and 

reaches the carbon stock of temperate natural forests (45 Mg ha-1 after 20 years) should become 

clear in the coming years. But it is important to consider that every food forest is different and that 

carbon stocks of one or two single cases could not automatically be representative for all food 

forests. For example, Ketelbroek has a relatively high plant diversity and is not designed to 

maximise harvest. The expected carbon stock after 20 years is therefore higher in Ketelbroek than 

in Sualmana, but not automatically more representative for food forests in general. The carbon 

stock of food forests at a certain age should therefore be determined by a weighted average of 

standardised results, using single cases to explain variation in AGC stocks between food forests. 

Food forests with FLU forest have been compared to natural forests as well. This selection of food 

forests also had a significant lower AGC stock the reference forests. This could be declared by the 

fact that 2 out of 6 food forests in FLU category forest had a relatively low initial carbon stock. 

These food forests were converted from an orchard and a tree nursery. The former production 
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forests had a similar carbon stock as the reference forests. This is remarkable since production 

forests were expected to have maximised carbon stock (and the natural forest did not). Because 

the reference forests were measured very extensive (using only one sampling plot each), the results 

are assumed to be not very reliable. For example, a natural forest typically has very dense and less 

dense zones, i.e. it is quite heterogeneous (Zenner & Hibbs, 2000). Moreover, the natural edges of 

a forest contain less ABG carbon than the inner parts of the forest (Chaplin-Kramer et al., 2015; 

Remy et al., 2016). Because the sampling plots were generally located in a dense area and away from 

forest edges, the calculated carbon stock of reference forests could be higher than it actually was. 

This could declare the fact that carbon stocks measured in natural forests in this research were 

relatively high compared to other studies (Nabuurs & Mohren, 1993; Sikkema & Nabuurs, 1994). 

However, as mentioned before, it is hard to determine to what extent a Dutch forest is natural. It 

is assumable that the reference forests have been planted as production forests as well (Veenman, 

Lieferink & Arts, 2009), making the carbon stock of reference forests comparable to the carbon 

stock of productions forests. This corresponds to the data obtained in this study (mean AGC stock 

of 197 ± 78 Mg ha-1 in reference forests and 140 ± 110 Mg ha-1 in former production forests). 

When comparing the AGC stock of food forests to other studies, differences in methodology 

should be considered. The methodology in this research is mainly based on verified methodologies 

used all over the world (UNFCCC, 2013). However, these standards are not directly copied. The 

major modification was the inclusion of shrubs and small trees with a diameter at breast height of 

less than 5 centimetres. This adjustment increased the accuracy of carbon stock estimates but could 

have led to a higher AGC stock than studies that did not include these plants. Although the 

percentage of carbon stored in shrubs and small trees is expected to be relatively low, it could be 

one of the reasons that food forest Sualmana had a higher carbon stock than the Agroforestry 

Research Trust food forest in Devon (Lehmann et al., 2019; Schafer, Lysák & Henriksen, 2019). 

One could assume that the carbon stock calculations (i.e. the allometric equations and its 

assumptions) in other studies was similar in general, as the VCS was mainly followed. An extended 

analysis on the exact equations and implementations used in other studies on (food) forest carbon 

stocks could confirm the presumption of carbon stocks being comparable with each other. 

Furthermore, it might be useful to contact the managers and researchers involved in the 

Agroforestry Research Trust food forest to adjust both methodologies to one another. 

The aboveground carbon stock of the oldest food forest included in this research was significantly 

lower than the mean aboveground carbon stock of tropical home gardens (Rooduijn et al., 

unpublished data). Since temperate systems store more carbon belowground (relatively to their 

aboveground carbon storage (Birch, 1999), this result is not surprising. The fact that the AGC stock 

of temperate food forests is lower than tropical home gardens and agroforestry systems does 

therefore not mean that the total amount of carbon stored by the temperate food forest is lower 

as well. This food forest focussed on the variation in carbon stocks between Dutch food forests, 

which can be analysed based on AGC stock only. An estimate of total carbon stocks of food forests 

is necessary to facilitate a fair comparison between temperate and tropic systems. 

5.7. Limitations of this study 
The main limitation of this study is the underrepresentation of older food forests. As we are 

investigating a whole new concept of agriculture, we are just in the baseline stage of examining 

food forests. All analyses on the development of carbon stock over food forest age are suffering 

with the many variables that could have influenced this development. But one of the major goals 

of the national monitoring program food forests (NMPF) was to set up large-scale, standardised 

database. If we continue down this road, the actual increase in AGC stock in the same sampling 
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plot could be determined. The results described and discussed in this study can therefore be seen 

as baseline investigation and can be used as a guideline for further research.  

The objective of the NMPF to standardise and enlarge datasets on food forests, also has a 

downside. As hypothesised in advance, most food forests are very heterogeneous. By including so 

many food forests in this study, the sampling effort per food forest was limited. Several analyses, 

such as the exact effect of two soil texture classes within one food forest, were impracticable due 

to a lack of sufficient data. An expansion of the standard measurements with extra sampling points 

for a selection of interesting food forests would have made these analyses more expressive. In the 

coming years, it might be useful to make time for these additional measurements.  

Another aspect that was not analysed in this study is the presence of temporary trees. Some of the 

food forests planted temporary, fast-growing trees, in order to create favourable conditions for the 

more slowly growing crops. For example, these temporary trees provided shade and increased the 

moisture retain capacity of the soil. When the intended canopy trees have grown enough to survive 

itself, the temporary trees will be removed from the food forest. This could lead to an unexpected 

decrease in aboveground carbon stock. The presence of temporary trees could insinuate a more 

rapid carbon accumulation. Since these individuals were not present in all food forests, differences 

in carbon stock accumulation rates might partly be caused and explained by the presence of these 

temporary trees. This aspect could be one of the driving factors of the unexplained variety in AGC 

stock of food forests. 

At last, the implementation of zone selection in the methodology was both beneficial and limiting 

this study. In some situation, such as the examples mentioned in the previous paragraph, the 

implementation of zones provided useful information about the effects of variables on AGC stock. 

However, in some situations, the selected zones were hardly applicable in comparisons, for example 

when zones were distinguished based on multiple variables. Food forest Benthuizen was divided 

in two zones based on both age and structural composition. Since these two variables were both 

expected to affect aboveground carbon stock, these zones did not provide any specific information 

on the actual effect of age nor structural composition. Moreover, some of the zones were clearly 

distinguishable, but these differences were difficult to express in specific variables (for example in 

food forests De Overtuin and Voedselrijk). In these situations, the implementation of zones 

increased sampling effort, but did not increase the usefulness of the data. One could argue that it 

is more efficient to use a fixed sampling effort in every food forest, as been done in the study on 

soil conditions. In this way, time could be made for additional measurements in multiple zones, in 

food forests where this is expected to be appropriate only. Furthermore, the almost impossible 

objective to standardise zone selection could be released this way. From another perspective, it 

might be too early to classify some of the zones as useless. When comparing measurements on 

aboveground carbon stock in the same sampling plots each year, differences in accumulation could 

be compared between zones. Even the complex zones in De Overtuin and Voedselrijk could show 

differences in carbon accumulation rate. This could (unexpectedly) lead to new insights and further 

research can be based on these differences. Therefore, the implementation of zones as performed 

in this study could still be useful in all food forests, but the selection of specific food forests for 

additional, expanded measurements is a good idea anyway. 

5.8. Recommendations for further research 
As the results of this study were discussed, more and more interesting analyses came up, that could 

not be included in this research anymore due to time limitations. Furthermore, this study was 

limited in several ways, some of which could have been prevented by adjustments on methodology 
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or research approach. These things combined have led to the following list of recommendations 

for further research. Note that many of these suggestions were explained in Discussion. 

Validation of the results of this study 

 Analyse the accumulation of aboveground carbon stock over time within the same 

sampling plots, to determine the exact development of AGC stock in food forests. 

 Examine the effect of increasing aboveground carbon stock on the microclimate of food 

forests, including temperature and humidity analyses. A new, appropriate methodology for 

food forests located within natural forests needs to be made.  

 Analyse the planting statistics of food forests, in order to determine whether differences in 

aboveground carbon stock between alleys and dispersed food forests were caused by 

interspecific relations or planting techniques. 

Extension of analyses of this study 

 Determine the total carbon stock of the selected food forests, including aboveground 

carbon stock and amount of carbon stored in the soil. Ideally, measurements on food forest 

litter will be included as well.  

 Expand the comparison between aboveground carbon stock and soil variables. In this 

study, only pH, moisture availability, cation exchange capacity, total amount of nitrogen 

and soil organic matter were compared to AGC stock, but dozens of other variables are 

available. 

 Expand the sampling effort in a selected number of food forests, in order to determine the 

exact effect of one specific variable on aboveground carbon stock. Food forest 

Roggebotstaete is suggested for the effect of soil texture; food forest Lekker Landgoed 

seems to be most suitable for analyses on the effect of age; an ideal location to analyse the 

effect of former land use is not available yet. Note that case studies are only desirable to 

support standardised and large-scale studies, not to replace them. 

 Analyse the differences in aboveground carbon stock development between zones in food 

forest De Overtuin en Voedselrijk. The differences between these zones were based on 

(amount other things) permaculture management zones and future differences in structure. 

Due to its complexity, the zones were not compared to each other in this study, but an 

extended analysis could lead to new, important insights. 

Expansion of the dataset 

 Include more extended measurements on natural forests as reference for food forest 

aboveground carbon stock. Ideally, sampling plots in secondary developing forests and 

reforestation projects were added to the current selection of reference forests. 

 Include more data of relatively old temperate food forests and synchronise methodology 

with that of older food forests in other temperate areas, to validate the aboveground carbon 

stock of the oldest food forests in the Netherlands. 

Improvement of the methodology 

 Examine whether the maximum height of the tree layer or basal area of food forests is an 

appropriate variable for low-threshold aboveground carbon stock estimates. 

 Examine whether there is a fixed percentage of carbon stored in aboveground biomass of 

shrubs, in order to make the measurements less time-consuming. At least several years of 

measurements are expected to be necessary before this assessment could be made. 
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6. Conclusions 
The accumulation of aboveground carbon over food forest age seemed to follow a sigmoid curve. 

However, the accuracy of the saturation of this curve is uncertain. The development of carbon 

stock in the oldest food forests has to be analysed to confirm the sigmoid curve of carbon 

accumulation in food forests. AGC stock of food forests was significantly different between 

categories of structural composition and former land use. Dispersed food forests had a higher AGC 

stock than food forests with alleys. Whether positive interspecific interactions have played a role on 

this difference is questionable. Former forests had a larger AGC stock than former grasslands and 

arable lands. A decrease of AGC stock over food forest age is found in these former forests, 

possibly caused by thinning of the food forests or the large variety within this FLU category. An 

increase of carbon stock is expected after several years in food forests with FLU forest as well. 

Whether carbon accumulation is higher in former forests than on former arable lands and 

grasslands could not be concluded. Soil conditions seemed to have little effect on carbon 

accumulation. No significant effect of soil texture class on food forest aboveground carbon stock 

was found in this study, neither a significant correlation between AGC stock and one of the five 

soil variables (acidity, amount of SOM, amount of nitrogen, nutrient-, and water availability). An 

analysis of AGC accumulation over time within the same plots is necessary to confirm the absence 

of any effect of soil conditions on carbon accumulation. This analysis could also confirm the effect 

of structural composition and former land use on AGC stock. 

Food forests had a significant effect on the microclimate. A significant higher temperature and 

lower humidity of the air was found inside food forests compared to the outside conditions. No 

significant regressions of these differences in in temperature and humidity over food forest age or 

AGC stock were found. However, due to a lack of relatively old food forests and food forests with 

a relatively large AGC stock in these measurements, the presence nor absence of this regression 

could be determined. Even young food forests without a large AGC stock had a cooling and 

moisturising effect on the microclimate. 

The mean AGC stock of food forests was significantly lower than that of reference forests. The 

accuracy of measurements on reference forests is debatable. Food forests included in this study 

seemed not to reach the same amount of carbon stock found in temperate natural forests. 

However, these conclusions are solely based on one single, relatively old food forest, and are 

therefore uncertain. A comparison between food forests and reforestation projects and secondary 

forests should be useful. Food forests did not store as much carbon as tropical agroforestry systems 

in their aboveground biomass. However, since temperate forests have a higher relative 

belowground carbon stock than tropical forests, this does not automatically mean that the total 

carbon stock of temperate food forests is lower than its tropical equivalents. Further research is 

necessary to describe this relation between temperate and tropic systems. 

Both basal area and maximum height were explaining a large proportion of the variation in AGC 

stock (84 and 87% relatively). A combination of both variables was explaining almost all variation 

in AGC stock (99%). Canopy closure was explaining less variation (66%) and an addition of canopy 

closure to the model did not increase the explaining capacity (99%). Basal area and maximum height 

seemed to be useful variables to estimate aboveground carbon stock, although it is necessary to 

measure both in order to determine AGC stock more precisely. A fixed percentage of AGC stored 

in shrubs could not be determined and therefore it is useful to continue shrub carbon stock 

measurements. 
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Appendix 1: Information of 21 included food forests 
 

Table A1: Information of 21 food forests included in this study, including 42 zones in total. Not all information could be 

shown in one table, other information can be found in Table A2. Food forest = name of the food forest. Zone = Coding of the 

zone, the first letter referred to the food forest, the second letter referred to the zone (A, B, C or D). Detailed FLU = Zone 

former land use. FLU = Former land use category in which the zone has been assigned: forest, arable land or grassland. Planting = 

The year of the first planting event. All planting events in the period November – March has been assigned to the year of the 

growing season. Age = The age of the zone in growing seasons. * = Food forest Groengenoten was divided in two zones based 

on its former land use, but both FLU’s were classified in category grassland. 

Food Forest Zone Detailed FLU FLU Planting Age 

De Overtuin AA Arboretum Forest 2019 2 

De Overtuin AB Arboretum Forest 2019 2 

De Overtuin AC Arboretum Forest 2019 2 

De Overtuin AD Arboretum Forest 2019 2 

Houtrak BA Arable Land Arable Land 2017 4 

MijnStadstuin CA Arable Land Arable Land 2016 5 

MijnStadstuin CB Arable Land Arable Land 2016 5 

Thuishaven DA Arable Land Arable Land 2018 3 

Droevendaal EA Orchard Forest 2019 2 

Voedselrijk FA Production Forest Forest 2019 2 

Voedselrijk FB Production Forest Forest 2019 2 

Voedselrijk FC Production Forest Forest 2019 2 

Voedselrijk FD Production Forest Forest 2019 2 

Eemvallei_Zuid GA Arable Land Arable Land 2020 1 

Eemvallei_Zuid GB Arable Land Arable Land 2020 1 

Den Food Bosch HA Maize Pasture Arable Land 2017 4 

Schijndel Boschweg IA Arable Land Arable Land 2019 2 

Hardekamp JA Ryegrass field Grassland 2019 2 

Schijndel Hardekamp JB Ryegrass field Grassland 2020 1 

Schijndel Hardekamp JC Ryegrass field Grassland 2021 0 

Ketelbroek KA Maize Pasture Arable Land 2015 6 

Ketelbroek KB Maize Pasture Arable Land 2009 12 

Groengenoten LA Horse Field* Grassland 2019 2 

Groengenoten LB Horse Field* Grassland 2019 2 

Sualmana MA Sheep Field Grassland 1999 22 

Vlaardingen NA Recreation Field Grassland 2015 6 

Vlaardingen NB Forest Forest 2015 6 

Vlaardingen NC Recreation Field Grassland 2015 6 

Benthuizen OA Arable Land Arable Land 2020 1 

Benthuizen OB Arable Land Arable Land 2018 3 

De Stomp PA Production Forest Forest 2019 2 

Kreilerwoud QA Horse Field Grassland 2017 4 

Roggebotstaete RA Tree Nursery Forest 2016 5 

Roggebotstaete RB Tree Nursery Forest 2016 5 

D'Ekkers SA Ryegrass field Grassland 2020 1 

D'Ekkers SB Ryegrass field Grassland 2020 1 
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Breedenbroek TA Barly Field Arable Land 2020 1 

Breedenbroek TB Barly Field Arable Land 2021 0 

Lekker Landgoed UA Herb-Rich Grassland Grassland 2016 5 

Lekker Landgoed UB Arable Land Arable Land 2017 4 

Lekker Landgoed UC Herb-Rich Grassland Grassland 2018 3 

Lekker Landgoed UD Herb-Rich Grassland Grassland 2019 2 

Reference 
Groengenoten 

VB 
 

Forest 
  

Reference Ketelbroek WB 
 

Forest 
  

Reference 
Thusihaven 

XB 
 

Forest 
  

 

Table A2: Information of 21 food forests included in this study, including 42 zones in total. Not all information could be 

shown in one table, other information can be found in Table A1. Zone = Coding of the zone, the first letter referred to the food 

forest, the second letter referred to the zone (A, B, C or D). Structural Composition = Structural composition of the zone, 

either dispersed or Alleys. Altitude = Category of zone altitude, either normal or raised (mounds). Soil Texture = Soil texture class, 

based on the soil texture triangle: Loam, Sand or Clay. Carbon = Aboveground carbon stock of the zone in Mg Co2 ha-1. Canopy 

= Average percentage of the canopy closure. Temp = Relative difference in temperature between inside and outside 

measurements in % of outside temperature. Hum = Relative difference in temperature between inside and outside measurements 

in % of outside humidity. N.A. = data not available. 

Zone Structural 
Composition 

Altitude Soil 
Texture 

Carbon Canopy Temp Hum 

AA Dispersed Normal Loam 43,57 76,43 -28,04 -9,83 

AB Alleys Normal Loam 2,03 56,00 -27,33 16,67 

AC Alleys Normal Loam 18,46 58,10 -49,11 44,56 

AD Dispersed Normal Loam 32,05 63,77 -49,42 58,20 

BA Alleys Normal Clay 0,13 0,00 N.A. N.A. 

CA Dispersed Raised Loam 0,49 N.A. N.A. N.A. 

CB Dispersed Normal Loam 0,46 N.A. N.A. N.A. 

DA Dispersed Normal Clay 0,06 0,00 -35,85 64,09 

EA Alleys Normal Sand 2,29 10,77 -34,25 79,47 

FA Dispersed Normal Sand 159,31 58,20 N.A. N.A. 

FB Dispersed Normal Sand 90,46 58,13 N.A. N.A. 

FC Dispersed Normal Sand 194,67 66,10 N.A. N.A. 

FD Dispersed Normal Sand 95,19 71,00 N.A. N.A. 

GA Alleys Normal Clay 0,00 0,00 -20,60 23,09 

GB Dispersed Normal Clay 0,00 0,00 -19,84 9,73 

HA Dispersed Normal Sand 0,00 3,10 -9,28 0,21 

IA Dispersed Normal Sand 0,00 0,00 -18,35 68,11 

JA Dispersed Normal Loam 0,04 0,00 -27,22 35,83 

JB Alleys Normal Loam 0,02 0,00 -26,43 28,66 

JC Alleys Normal Loam 0,00 0,00 3,56 -43,49 

KA Alleys Normal Loam 4,58 35,10 -55,00 216,09 

KB Dispersed Normal Loam 15,87 59,00 -18,75 32,31 

LA Alleys Normal Sand 0,01 6,33 -36,87 164,99 

LB Alleys Normal Sand 0,01 7,10 -29,32 131,47 

MA Dispersed Normal Sand 37,16 82,47 N.A. N.A. 

NA Dispersed Raised Loam 3,93 10,23 -10,24 -4,16 
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NB Dispersed Normal Loam 113,20 81,23 -32,20 25,47 

NC Dispersed Normal Loam 4,53 36,77 N.A. N.A. 

OA Alleys Normal Clay 0,09 0,57 -27,90 67,82 

OB Dispersed Normal Clay 0,30 0,00 -38,92 124,14 

PA Alleys Normal Loam 169,60 86,35 -19,46 -3,04 

QA Alleys Raised Loam 0,64 0,00 -25,48 27,87 

RA Alleys Normal Sand 9,58 48,37 -16,75 -1,93 

RB Alleys Normal Loam 7,19 71,23 -31,50 9,48 

SA Dispersed Normal Sand 0,01 0,00 N.A. N.A. 

SB Alleys Normal Sand 0,00 0,00 N.A. N.A. 

TA Dispersed Normal Sand 0,04 0,00 -24,80 49,63 

TB Alleys Normal Sand 0,00 0,00 -18,26 32,16 

UA Dispersed Raised Clay 1,25 19,53 -11,18 1,29 

UB Dispersed Normal Clay 0,36 0,00 -26,52 19,24 

UC Dispersed Normal Clay 0,12 0,00 -7,37 -6,23 

UD Dispersed Normal Clay 0,01 0,00 -18,48 0,45 

VB Dispersed Normal Sand 111,01 62,30 -19,55 61,19 

WB Dispersed Normal Loam 263,60 93,70 -49,14 151,35 

XB Dispersed Normal Clay 217,95 90,70 -59,79 147,51 
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Appendix 2: Protocols of the fieldwork 
In this section, the protocols that have been used during the fieldwork are given, including: 

- Protocol on sampling plot selection in food forests. 
- Protocol on sampling plot selection in reference forests. 
- Protocol on measurements within the 10x10m sampling plot. 
- Protocol on temperature and humidity measurements. 
- Soil Texture Triangle used to determine soil texture classes (Figure A1). 
- List of tree and shrub species commonly planted in food forests used to determine 

whether plants are shrubs or trees (Table A3). 

 

Appendix 2.1. Protocol for random selection of sampling plots in food forests 
The following protocol is to determine the location of sampling plots in the food forests. This 

protocol has also been used in other studies part of the NMPF. 

1. Find the concerning cadastral parcel in QGIS (using the PDOK database). 

2. Geo-reference the food forest design / map including landscape elements with the 

cadastral parcel. 

3. Use ‘Create grid (in Vector > research tools) to place a grid over the food forest parcel. 

Use the layer extent of the food forest as grid extent and use rectangle 10x10m as grid type. 

4. Determine whether the food forest must be divided in zones (in consultation with the 

NMPF-coordinator and/or food forest manager). 

5. Indicate the zones by splitting drawing the zone boundaries and splitting up the grid. 

6. Remove all grids that lay partly outside of the food forests manually. Remove grids that lay 

in two zones manually as well.  

7. Determine the number of sampling plots to select: 

a. If the food forest is not divided in zones, the number of sampling plots depends 

on the food forest size. Multiply the total area in hectares with 3 to obtain the 

number of sampling plots. A minimum 3 and a maximum of 6 plots will be handled. 

Example: 1.75*3=5.25 (rounded to 5) sampling plots will be selected in a food forest 

with a size of 1.75ha.  

b. If the food forest is divided in zones, the fixed number of 3 sampling plots per 

zone will be used. Example: 3x3=9 sampling plots will be selected in a food forest 

with 3 zones. There is one exception: If a zone consists of 5 grids or less, only 2 

sampling plots will be selected. 

c. Blue measuring points (that are used for NMPF soil measurements before) will 

automatically be selected as sampling point for this research as well. The number 

of blue points in a food forest or zone must be deducted from the points to be 

selected). Example: 3 sampling plots must be allocated to a certain zone and 1 blue 

point is located in this zone. The blue point will automatically be selected. The 

other 2 sampling points will be selected randomly (see Step 8). 

8. Use the tool ‘Random selection’ (in Vector > research tools > random selection points) to 

select the sampling points randomly. If the food forest is undivided, one selection will be 

performed for the entire grid. If the food forest is divided, one selection per zone will be 

performed.   

9. If the selected grid is ‘impossible or undesirable’, one grid westwards is selected 

alternatively. If this grid is ‘impossible or undesirable’ as well, one grid northwards 

(relatively to the original grid) is selected. Or, as last option, one grid eastwards or 
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southwards, in this order. A grid is classified as ‘impossible or undesirable’ when a pond, 

paved path or building is located in the grid. 

10. If all sampling plots are selected, save the random selection as new layer (export > save 

selected features as…). 

11. Expand the attribute table with a new field for the labels (text string, length = 5), with title 

ID_NMVB. Use the labels in the map. Make sure that each zone has a specific color, to 

clearly visualise to which zone a certain sampling plot belongs.  

12. Arrange all sampling plots from left to right and from top to bottom in the attribute table, 

by clicking on column left and column top. Label all sampling plots in this order with a capital 

letter to indicate the food forest, a lowercase letter to indicate the zone and a number to 

indicate the sampling plot. Example: Sa1, Sa2, Sa3, Sb1, Sb2, Sb3, etc. 

13. Export all layers and the parcel boundaries as kml-file by using the MMQGIS plugin. Make 

sure that all plots are labeled with the ID_NMVB field. 

14. Open the kml-file in Google Earth (or any other software) and export it to your mobile 

device. 

15. If a selected plot turns out to be ‘impossible or undesirable’ in the field because of water, 

paved paths or buildings, the plot could be moved westwards, northwards, eastwards, or 

southwards in this order. 

Appendix 2.2. Protocol for random selection of sampling plots in reference 

forests 
In the reference forests, only one sampling plot is selected. The following, less-time consuming 

protocol has been used to locate this sampling plot: 

1. Start at the southeastern corner of the forest parcel (if this is not possible, determine 

another starting point which could be found back easily).  

2. Set a timer at 1 minute and start walking northwestwards (if started at an alternative starting 

point, walk 1 minute towards the center of the parcel (use google maps to determine 

walking direction). 

3. Stop walking after 1 minute and start a stopwatch. 

4. Stop the stopwatch blindly at a random moment and notate the first two decimals shown 

by the stopwatch.  

5. Walk the number of meters shown by the first decimal northwards and the number of 

meters shown by the second decimal westwards. This point is the northeastern corner of 

the sampling plot. (For example: If the stopwatch has been stopped at 00:03:56, the 

northeastern corner of the sampling plot is located 5 meters northwards and 6 meters 

westwards). 

6. Determine the other corners of the sampling plot by walking ten meters southwards 

(southeastern corner) and westwards (northwestern corner) and ten meters southwards 

from the northwestern corner. 

7. If the determined sampling plot could not be used (because of a paved road, pond or 

building), the end point of the random selection methods (end of step 5) is used as 

northwestern corner of the sampling plot instead (i.e. the entire sampling plot is moved 10 

meters eastwards). When this is not possible as well, the end point of step 5 is used as 

southwestern corner instead. When this is not possible as well, the end point of step 5 is 

used as southeastern corner instead. If all options are not possible, this protocol must be 

performed again from the beginning.  
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Appendix 2.3. Protocol for all measurements within the 10x10 meter sampling 

plot 
Supplies: Bamboo sticks (4 per sampling plots), measuring tape of 10 metres, compass, inclinometer, application 
PlantNet, list of food forest shrub and tree species (NMPF), Heukels’ Flora van Nederland (or other identification 
books), thermohygrometer. 
 
The following protocol must be considered to determine the sampling plots: 

1. The location of the center of the sampling plot was found through its GPS-location.  
2. From the center of the sampling plot, one walked five meters northward and five meters 

eastward to determine the northeastern corner of the plot. A steel bar was placed at this 
spot and labeled with the code of the plot.  

3. From the northeastern corner, the other corners were determined by walking ten meters 
southwards and westwards and walking ten meters southwards from the northwestern 
corner. A metal herring was inserted in the soil at these three corners. 

 
The following measurements must be taken for all individual trees and shrubs within the 10x10m 
sampling plot. Only those trees of which the stem was entirely located within the plot were included. 
Only shrubs of which the center of the basal area was entirely located within the plot were included. 

1. Determine the species of the individual using Heukels’ Flora or other reference works 
(Plantnet could not be used for species determination). 

2. Determine the correctness of the application Plantnet, by allocation one of the following 
four categories: 

a. The actual species is at the top of the list provided by Plantnet, having a score of at 
least 3.00. 

b. The actual species is at the top of the list provided by Plantnet, having a score of 
less than 3.00. 

c. The actual species is at the second or third place of the list provided by Plantnet. 
d. The actual species is not present in the top three of the list provided by Plantnet. 

3. Determine whether the individual is planted or spread wildly. 
4. Determine whether the individual is a tree or a shrub. The list of shrub and tree species 

provided by the NMPF will be used, even when the growth form of the concerning 
individual suggests the other category. If the species is not included in the list, the species 
will be allocated to the category of related species. In case of doubt, the coordinator of the 
NMPF must be consulted. 

 
The following measurements must be taken for all trees within the sampling plot: 

1. Determine whether the diameter of the stem is at least 5 mm. If the diameter is not, 
determine the number of individuals of this species in the entire sampling plot. If the 
diameter is at least 5 mm, continue the measurements following the next steps. 

2. Determine the maximum height of the tree in centimeters, using an inclinometer. The 
height of trees less than 2 meters is determined using measuring tape instead of an 
inclinometer. 

3. Determine the diameter of the stem at 130 centimeters aboveground. If the stem is 
branched off at this height, determine stem diameter at 60 centimeters aboveground 
instead. If the steam is branched of at 60 centimeters as well, determine stem diameter just 
below the bottom branch (notate measuring height as well in the last scenario). 

 
The following measurements must be taken for all shrubs within the sampling plot: 

1. Determine the maximum height of the shrub in centimeters, using an inclinometer. The 
height of shrubs less than 2 meters is determined using measuring tape instead of an 
inclinometer.  
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2. Determine the diameter of the crown in centimeters in two perpendicular directions. Only 
the crown area located within the sampling plot will be included.  

3. Determine the number of stems with a diameter of more than 5mm. 
4. Determine the circumference of the three thickest stems of the shrub at 30 centimeters 

aboveground. 

 

Appendix 2.4. Protocol for temperature and humidity measurements 

1. An automatic data logger will be used to determine humidity and temperature. The logger 

must be set to six measurements per hour (one measurement every ten minutes).  

2. The outside logger must be placed at least 10 meters outside the food forest at an unpaved 

surface. Ideally, the outside logger will be placed in the roadside. The logger should not be 

shadowed by any trees or buildings. 

3. The inside logger will be moved along all sampling plots. During the displacement of the 

logger, the measurements will not be paused. Measurements taken during displacements 

must be removed manually after the data was extracted from the logger. The displacement 

events should be as short as possible, and the logger will be carried in an empty bag to 

prevent it for being heated up. During the logger is placed at the center of the sampling 

plot in the vegetation, even when this location is shadowed by any tree or shrub.  

4. At least 3 measurements are necessary per location, which means that the data logger must 

be placed at the sampling plot for at least 30 consecutive minutes. 

Appendix 2.5 Protocol for zone selection 
Since the selection of plots is standardised in the national monitoring program, the decision 

whether to split up food forests or not should ideally be standardised either. However, zone 

selection will always be subjective. In this research, the zone selection was limited to the following 

aspects. If a food forest had intern differences in one or multiple of these aspects, this food forest 

could be divided into multiple zones (which does not mean that this was always been done): 

- Age of the food forest, which is determined as the number of growing seasons since the 

first major planting event. The growing season starts in March each year. 

- Former land use, which is limited to three former land use categories (see section 3.3). 

- Soil texture, which is limited to the three soil texture classes (see section 3.3). 

- Elevation. The minimum difference in elevation should be 1m.  

- Structural composition. 

Especially the last criterion is food for thought, since the vegetation structure in a food forest is 

commonly very heterogeneous. The main reason to divide a food forest into two zones based on 

structural composition was the difference between production-oriented, so-called ‘rational food 

forests’ and more forest-looking ‘romantic food forests’. Although these terms are common for 

insiders, the terms ‘alleys’ (for rational food forests), and ‘dispersed’ (for romantic food forests) 

will be used in this research instead. Other differences in vegetation structure could also be a reason 

for applying zones. This was always discussed with the management of the national monitoring 

programming to pursue maximum objectivity.  

After the criteria for zone selection were drawn up, it was necessary to determine whether these 

situations were suitable for a zone or not. Even with these restrictions and criteria, it was impossible 

to capture a subjective decision into an objective protocol, although it might help determining 
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whether zones should be implemented in future or not. The following conditions should be met 

to split up a food forest into zones: 

- The zones are clearly distinguishable. If there is a gradient from one condition to another, 

it is impossible to determine whether the zone border should be located.  

- The zone has a minimum size of 10 complete grids. Since the minimum sample effort was 

determined at three plots per zone, this minimum size is necessary to select plots randomly. 

As in the one-zone food forests, the plot selection was made using QGIS (QGIS, 2020). In 

collaboration with food forest owners, a map with the zones was drawn up and georeferenced to 

the parcel in QGIS. In this way, the exact borders of the zones were determined. The plots that 

were located at the border of two zones were deleted from the grid. The grid of the food forest 

was split up into a grid for all zones each, after which three measuring plots were randomly selected 

by the random selection tool in QGIS (see Appendix 3 for the entire protocol). Since the amount 

of measuring plots automatically equalled or transcended the maximum number of plots selected 

in one-zone food forests, the number of plots per zone were not size dependent. Lowering the 

minimum number of plots per zone would have increased the chance of coincidental observations 

and was therefore not applied, while enhancing the number of plots would have been made the 

sampling effort less accessible. 

 

 

  

Figure A1: Soil Texture Triangle (Groenendyk et al., 2015). Based on this triangle,  

food forests were divided into three soil texture classes (sand, loam and clay). 
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Table A3: List of tree and shrub species commonly planted in food forests. This list has been used  

to determine whether tree or shrub equations were used.  

  

Tree species Shrub species 
Acer saccharum Acca sellowiana 

Acer (other species) Amelanchier lamarckii 

Araucaria araucana Arbutus unedo 

Asimina triloba Berberis vulgaris 

Betula pendula (or pubscens) Chaenomeles cathayensis 

Carya ilinoinensis Chaenomeles japonica 

Carya illinoiensis x laciniosa Cornus mas 

Carya laciniosa Corylus avellana 

Carya tomentosa Cydonia oblonga 

Castanea sativa Eleagnus multiflora 

Cercis siliquastrum Eleagnus umbellate 

Citrus (multiple species) Eleagnus x ebbingei 

Corylus colurna Ficus carica 

Crataegus germanica Hibiscus syriacus (or other species) 

Crataegus schraderiana Hippophae rhamnoides 

Diospyros kaki Lonicera caerulea 

Diospyros lotus Lycium barbarum 

Diospyros virginiana Mahonia aquifolium 

Eribotrya japonica Myrica gale 

Ginkgo biloba Poncirus trifoliata 

Gleditsia triacanthos Ribes (other species) 

Halesia carolina Ribes nidigrolaria 

Hovenia dulcis Ribes nigrum 

Juglans ailantifolia Ribes odoratum 

Juglans ailantifolia x cinerea Ribes rubrum 

Juglans cinerea Rubus fructicosus 

Juglans nigra Rubus idaeus 

Juglans regia Rubus ideaus x fruticosus (tayberry, loganberry, etc.) 

Magnolia (multiple species) Rubus phoenicolasius 

Malus domestica Sambucus nigra 

Morus alba Staphylea pinnata 

Morus nigra Tilia cordata (if planted in a hedge) 

Pinus koraiensis Ugni molinea 

Pinus pinea Vaccinium corymbosum 

Prunus armeniaca Viburnum lentago 

Prunus avium Xanthocera sorbifolium 

Prunus cerasus Zanthoxylum simulans (or piperitum) 

Prunus domestica  

Prunus dulcis  

Prunus persica  

Prunus persica nucipersica  

Prunus salicina (or triflora)  

Pyrus communis  

Pyrus pyrifolia  

Quercus (multiple species)  

Robinia pseudoacacia  

Sorbopyrus auriculata  

Sorbus aucuparia 

Sorbus domestica 

Tilia cordata 

Toona sinensis 

Torreya grandis grandis 
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Appendix 3: Assumption Tests 
 

 

Figure A2: Diagnostic plots belonging to the generalised linear model: glm(Carbon ~ Age).  

Data was not normal (left graph) and heteroscedastic (right graph). n = 130. Exported from Rstudio. 

 

Figure A3: Diagnostic plots belonging to the generalised linear model: glm(Carbon ~ Age), 

including all food forests on former arable lands and grasslands. Data was not normal (left graph)  

and heteroscedastic (right graph). n = 95. Exported from RStudio. 
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Figure A4: Diagnostic plots belonging to the generalised linear model: glm(Carbon ~ Age * FLU).  

Data was not normal (left graph) and heteroscedastic (right graph). n = 130. Exported from RStudio. 

 

Figure A5: Diagnostic plots belonging to the generalised linear model: glm(Carbon ~ Age * Soil Texture).  

Data was not normal (left graph) and heteroscedastic (right graph). n = 130. Exported from Rstudio. 
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a       b 

a 
b 

Appendix 4: Supplementary Results 
 

 

Figure A6: Food forest aboveground cabon stock versus food forest age on former arable lands and grasslands. Scatter 

points representate sampling plots). Aboveground carbon stock is expressed in Mg CO2 ha-1, age is expressed in years. ANOVA 

and Kruskal-Wallis tests were used to describe the regression between both variables a) Aboveground carbon stock versus food 

forest age for food forest with FLU arable land and grassland (n = 81). b) Aboveground carbon stock versus food forest age for 

food forest with FLU arable land and grassland (n = 95). Exported from RStudio, 

 

 

 

 

 

 

 

 

 

 

 

Figure A7: Correlation matrices of microclimate variables and soil variables separately. In both situations, the number of 

measuring points included in the research increased (from 12 to 31 and 18 respectively). a) Correlation matrix with aboveground 

carbon stock, canopy closure, difference in temperature and difference in humidity (both between inside and outside). Data was 

available per zone, n = 31. b) Correlation matrix with aboveground carbon stock and all seven soil variables. Data was available 

per food forest, n = 18. Carbon stock was now significantly correlating with soil acidity (pH). Exported from RStudio.  
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Figure A8: Heatmap of aboveground carbon stock, all microclimate variables,  

all soil variables and maximum height of tree layer. Two clusters can be distinguished: 

A: pH, Lutum, SOM, CEC, Ntot, Moisture. B: Age, Canopy, Heightmax, Carbon. 

Exported from RStudio. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A9: Food forest aboveground carbon stock versus soil organic matter.  

All plotted values represent food forests (n = 18). No significant regression was found  

(p = 0.20).  
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Figure A10: Supplementary plots on the relation between aboveground carbon stock and structural composition. 

Aboveground carbon stock is expressed in Mg Co2 ha-1. a) Boxplot of the aboveground carbon stock per structural composition, 

for food forests with both compositions.n = 36. Dispersed food forests had a higher aboveground carbon stock than food forests 

with alleys (p = 0.02). f) Lineplot of food forests with both structural compositions. Strata means are shown. n = 12. Paired t-test 

showed significant higher carbon stock in dispersed food forests (p = 0.02). Food forest Ketelbroek is not shown, to improve 

visuality of the graph. Exported from RStudio. 

  

a b 
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Table A7: Outcomes of Tukey’s Honest Significance Test for AGC stock per soil texture and former land use. a) 

Outcome of the post-hoc test for three categories of former land use. Significant differences were found between forest and arable 

land and between forest and grassland (p < 0.05). b) Outcome for the post-hoc test for three soil texture classes. Significant 

difference was found between sandy and clay soils (p < 0.05) 

 

 

Figure A12: Aboveground carbon stock versus age of the (food) forest  

including reference forests. Data points are coloured by former land use.  

Food forests, n = 130), reference forests (n=3). 

 

                             Estimate Std. Error t value Pr(>|t|)     

Forest - Arable Land == 0      64.811     10.187   6.362   <1e-05 *** 
Grassland - Arable Land == 0    2.000      9.387   0.213    0.975     

Grassland - Forest == 0       -62.811     10.331  -6.080   <1e-05 *** 

                              Estimate Std. Error t value Pr(>|t|)    

Loam - Clay == 0               17.91      11.81    1.516   0.28699    

Sand - Clay == 0               34.01      11.33    3.002   0.00922 ** 

Sand - Loam == 0               16.10      10.99    1.465   0.31112    

Figure A11: Boxplots of boveground carbon stock of food forests 
with FLU forest and reference forests. 35 sample plots of food 
forests and 3 sample plots of reference forests were included.. ACS 
was higher in reference forests, with 95% confidence interval = 
[24.48;228.0]; difference was significant (p = 0.01) based on Mann 
Whitney U test. Exported from RStudio. 
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Figure A13: Aboveground carbon stock versus canopy closure. The turning point 

between a linear relation and the saturation of the curve is located at an AGC stock 

of ~ 15 Mg ha-1 which corresponds to an age of 7-8 years (for food forests without 

initial aboveground carbon stock). 

 

Figure A14: Carbon stock of shrubs versus trees on non-transformed scales.  

Scatter points representate sampling plots (n = 130). Aboveground carbon stock is  

expressed in Mg CO2 ha-1.  
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Table A8: The output of the dredge analyses for selecting the best explanatory generalised linear models concerning 

canopy closure (Canopy), maximum height (HT) and basal area (BA). Degrees of freedom (df) indicates model complexity; 

less degrees of freedom indicates a simpler model. Log likelihood (LogLik) indicates the explanatory capacity of the model; a lower 

LogLik indicates a better explaining model. Akaike Information Criterion (AICc) ranks models based on both explanatory capacity 

and complexity; the model with the lowest AICc is the best model. Delta AIC shows the difference in AICc between a model and 

the best scoring model; all models with a delta < 2 are selected. 

 

Intercept Canopy BA HT df LogLik AICc Delta 
AIC 

Adj. 
R2 

P 

-14.659 -0.601 0.0412 0.038 5 -346.20 703.29 0 0.99 2.2e-16 

-17.124 NA 0.0389 0.019 4 -353.69 715.97 12.67 0.99 2.2e-16 

-5.397 NA 0.0455 NA 3 -357.40 721.15 17.86 0.83 2.2e-16 

-1.428 -0.173 0.0479 NA 4 -356.61 721.81 18.52 0.83 2.2e-16 

-35.573 NA NA 0.078 3 -393.25 792.85 89.55 0.55 2.2e-16 

-35.064 -0.222 NA 0.087 4 -392.92 794.42 91.13 0.65 2.2e-16 

-6.615 1.189 NA NA 3 -410.35 827.05 123.75 0.28 8.5e-07 

36.464 NA NA NA 2 -422.89 849.95 146.65 0.99 2.2e-16 

 


